
KLIFF Documentation
Release 0.4.3

Mingjian Wen

Dec 25, 2023

CONTENTS

1 Installation 3

2 Tutorials 5

3 Theory 27

4 Frequently Used Modules 29

5 How To 45

6 Command Line Tool 49

7 Contributing guide 51

8 Change Log 53

9 Change Log 59

10 Change Log 65

11 Change Log 71

12 Frequently Asked Questions 77

13 Package Reference 79

14 Indices and tables 81

Bibliography 83

i

ii

KLIFF Documentation, Release 0.4.3

KLIFF is an interatomic potential fitting package that can be used to fit both physics-motivated potentials (e.g. the
Stillinger-Weber potential) and machine learning potentials (e.g. neural network potential). The trained potential can
be deployed with the KIM-API, which is supported by major simulation codes such as LAMMPS, ASE, DL_POLY,
and GULP among others.

CONTENTS 1

https://openkim.org/kim-api/
https://lammps.sandia.gov/
https://wiki.fysik.dtu.dk/ase/
https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx/
http://gulp.curtin.edu.au/gulp/

KLIFF Documentation, Release 0.4.3

2 CONTENTS

CHAPTER

ONE

INSTALLATION

KLIFF can be installed via package managers (conda or pip) or from source.

1.1 Installing KLIFF

This recommended way to install KLIFF is via conda. You can install it by:

$ conda create --name kliff_env
$ conda activate kliff_env
$ conda install -c conda-forge kliff

Alternatively, you can install using pip:

$ pip install kliff

or from source:

$ git clone https://github.com/openkim/kliff
$ pip install ./kliff

1.2 Other dependencies

1.2.1 KIM API and kimpy

KLIFF requires kim-api and kimpy to be installed. If you install KLIFF via conda as described above, these two pack-
ages are installed automatically, and you are good to go. Otherwise, you will need to install kim-api and kimpy before
installing KLIFF. Of course, you can first install them using conda $ conda install -c conda-forge kim-api
kimpy and then install KLIFF using pip or from source. Alternatively, you can install them from source as well, and
see their documentation for more information.

3

https://openkim.org/kim-api
https://github.com/openkim/kimpy
https://openkim.org/kim-api
https://github.com/openkim/kimpy

KLIFF Documentation, Release 0.4.3

1.2.2 PyTorch

For machine learning potentials, KLIFF takes advantage of PyTorch to build neural network models and conduct the
training. So if you want to train neural network potentials, PyTorch needs to be installed. Please follow the instructions
given on the official PyTorch website to install it.

1.2.3 KIM Models

If you are interested in training physics-based models that are avaialbe from OpenKIM, you will need to install the
KIM models that you want to use. After kim-api is installed, you can do $ kim-api-collections-management
list to see the list of installed KIM models. You can also install the models you want by $
kim-api-collections-management install <model-name>. See the kim-api documentation for more infor-
mation.

If you see a list of directories where the KIM model drivers and models are placed, then you are good to go. Otherwise,
you may forget to set up the PATH and bash completions, which can be achieved by (assuming you are using Bash):
$ source path/to/the/kim/library/bin/kim-api-activate. See the kim-api documentation for more infor-
mation.

4 Chapter 1. Installation

https://pytorch.org
https://pytorch.org
https://pytorch.org
https://openkim.org
https://openkim.org/kim-api
https://openkim.org/kim-api
https://openkim.org/kim-api

CHAPTER

TWO

TUTORIALS

Note: We are transition the tutorials from sphinx-gallery to jupyter notebooks. Some links might be broken and we
are working on fixing them.

2.1 Train a Stillinger-Weber potential

In this tutorial, we train a Stillinger-Weber (SW) potential for silicon that is archived on OpenKIM_.

Before getting started to train the SW model, let’s first make sure it is installed.

If you haven’t already, follow installation to install kim-api and kimpy, and openkim-models.

Then do $ kim-api-collections-management list, and make sure SW_StillingerWeber_1985_Si__MO_405512056662_006
is listed in one of the collections.

We are going to create potentials for diamond silicon, and fit the potentials to a training set of energies and forces consist-
ing of compressed and stretched diamond silicon structures, as well as configurations drawn from molecular dynamics
trajectories at different temperatures. Download the training set :download:Si_training_set.tar.gz <https:/
/raw.githubusercontent.com/openkim/kliff/master/examples/Si_training_set.tar.gz>. (It will be
automatically downloaded if not present.) The data is stored in # extended xyz format, and see doc.dataset for more
information of this format.

Let’s first import the modules that will be used in this example.

from kliff.calculators import Calculator
from kliff.dataset import Dataset
from kliff.dataset.weight import Weight
from kliff.loss import Loss
from kliff.models import KIMModel
from kliff.utils import download_dataset

ModuleNotFoundError Traceback (most recent call last)
Cell In[1], line 1
----> 1 from kliff.calculators import Calculator

2 from kliff.dataset import Dataset
3 from kliff.dataset.weight import Weight

ModuleNotFoundError: No module named 'kliff'

5

KLIFF Documentation, Release 0.4.3

2.1.1 Model

We first create a KIM model for the SW potential, and print out all the available parameters that can be optimized (we
call this model parameters).

model = KIMModel(model_name="SW_StillingerWeber_1985_Si__MO_405512056662_006")
model.echo_model_params()

#==
Available parameters to optimize.
Parameters in `original` space.
Model: SW_StillingerWeber_1985_Si__MO_405512056662_006
#==

name: A
value: [15.28484792]
size: 1

name: B
value: [0.60222456]
size: 1

name: p
value: [4.]
size: 1

name: q
value: [0.]
size: 1

name: sigma
value: [2.0951]
size: 1

name: gamma
value: [2.51412]
size: 1

name: cutoff
value: [3.77118]
size: 1

name: lambda
value: [45.5322]
size: 1

name: costheta0
value: [-0.33333333]
size: 1

'#==\n#␣
→˓Available parameters to optimize.\n# Parameters in `original` space.\n# Model: SW_
→˓StillingerWeber_1985_Si__MO_405512056662_006\n

(continues on next page)

6 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

(continued from previous page)

→˓#==\n\
→˓nname: A\nvalue: [15.28484792]\nsize: 1\n\nname: B\nvalue: [0.60222456]\nsize: 1\n\
→˓nname: p\nvalue: [4.]\nsize: 1\n\nname: q\nvalue: [0.]\nsize: 1\n\nname: sigma\nvalue:␣
→˓[2.0951]\nsize: 1\n\nname: gamma\nvalue: [2.51412]\nsize: 1\n\nname: cutoff\nvalue: [3.
→˓77118]\nsize: 1\n\nname: lambda\nvalue: [45.5322]\nsize: 1\n\nname: costheta0\nvalue:␣
→˓[-0.33333333]\nsize: 1\n\n'

The output is generated by the last line, and it tells us the name, value, size, data type and a description of each
parameter.

Now that we know what parameters are available for fitting, we can optimize all or a subset of them to reproduce the
training set.

model.set_opt_params(
A=[[5.0, 1.0, 20]], B=[["default"]], sigma=[[2.0951, "fix"]], gamma=[[1.5]]

)
model.echo_opt_params()

#==
Model parameters that are optimized.
Note that the parameters are in the transformed space if
`params_transform` is provided when instantiating the model.
#==

A 1
5.0000000000000000e+00 1.0000000000000000e+00 2.0000000000000000e+01

B 1
6.0222455840000000e-01

sigma 1
2.0951000000000000e+00 fix

gamma 1
1.5000000000000000e+00

'#==\n#␣
→˓Model parameters that are optimized.\n# Note that the parameters are in the␣
→˓transformed space if \n# `params_transform` is provided when instantiating the model.\n
→˓#==\n\nA␣
→˓1\n 5.0000000000000000e+00 1.0000000000000000e+00 2.0000000000000000e+01 \n\nB 1\
→˓n 6.0222455840000000e-01 \n\nsigma 1\n 2.0951000000000000e+00 fix \n\ngamma 1\n 1.
→˓5000000000000000e+00 \n\n'

Here, we tell KLIFF to fit four parameters B, gamma, sigma, and A of the SW model. The information for each fitting
parameter should be provided as a list of list, where the size of the outer list should be equal to the size of the parameter
given by model.echo_model_params(). For each inner list, you can provide either one, two, or three items.

• One item. You can use a numerical value (e.g. gamma) to provide an initial guess of the parameter. Alternatively,
the string 'default' can be provided to use the default value in the model (e.g. B).

• Two items. The first item should be a numerical value and the second item should be the string 'fix' (e.g.
sigma), which tells KLIFF to use the value for the parameter, but do not optimize it.

2.1. Train a Stillinger-Weber potential 7

KLIFF Documentation, Release 0.4.3

• Three items. The first item can be a numerical value or the string 'default', having the same meanings as
the one item case. In the second and third items, you can list the lower and upper bounds for the parameters,
respectively. A bound could be provided as a numerical values or None. The latter indicates no bound is applied.

The call of model.echo_opt_params() prints out the fitting parameters that we require KLIFF to optimize. The
number 1 after the name of each parameter indicates the size of the parameter.

2.1.2 Training set

KLIFF has a :class:~kliff.dataset.Dataset to deal with the training data (and possibly test data). Additionally, we
define the energy_weight and forces_weight corresponding to each configuration using :class:~kliff.dataset.
weight.Weight. In this example, we set energy_weight to 1.0 and forces_weight to 0.1. For the silicon training
set, we can read and process the files by:

dataset_path = download_dataset(dataset_name="Si_training_set")
weight = Weight(energy_weight=1.0, forces_weight=0.1)
tset = Dataset(dataset_path, weight)
configs = tset.get_configs()

2023-08-01 22:27:08.799 | INFO | kliff.dataset.dataset:_read:398 - 1000␣
→˓configurations read from /Users/mjwen.admin/Packages/kliff/docs/source/tutorials/Si_
→˓training_set

The configs in the last line is a list of :class:~kliff.dataset.Configuration. Each configuration is an internal
representation of a processed extended xyz file, hosting the species, coordinates, energy, forces, and other related
information of a system of atoms.

2.1.3 Calculator

:class:~kliff.calculator.Calculator is the central agent that exchanges information and orchestrate the operation
of the fitting process. It calls the model to compute the energy and forces and provide this information to the Loss
function_ (discussed below) to compute the loss. It also grabs the parameters from the optimizer and update the
parameters stored in the model so that the up-to-date parameters are used the next time the model is evaluated to
compute the energy and forces. The calculator can be created by:

calc = Calculator(model)
_ = calc.create(configs)

2023-08-01 22:27:09.207 | INFO | kliff.calculators.calculator:create:107 - Create␣
→˓calculator for 1000 configurations.

where calc.create(configs) does some initializations for each configuration in the training set, such as creating
the neighbor list.

8 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

2.1.4 Loss function

KLIFF uses a loss function to quantify the difference between the training set data and potential predictions and uses
minimization algorithms to reduce the loss as much as possible. KLIFF provides a large number of minimization
algorithms by interacting with SciPy_. For physics-motivated potentials, any algorithm listed on scipy.optimize.
minimize_ and scipy.optimize.least_squares_ can be used. In the following code snippet, we create a loss
of energy and forces and use 2 processors to calculate the loss. The L-BFGS-B minimization algorithm is applied to
minimize the loss, and the minimization is allowed to run for a max number of 100 iterations.

steps = 100
loss = Loss(calc, nprocs=2)
loss.minimize(method="L-BFGS-B", options={"disp": True, "maxiter": steps})

2023-08-01 22:27:09.210 | INFO | kliff.loss:minimize:310 - Start minimization using␣
→˓method: L-BFGS-B.
2023-08-01 22:27:09.212 | INFO | kliff.loss:_scipy_optimize:429 - Running in␣
→˓multiprocessing mode with 2 processes.

RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16
N = 3 M = 10

At X0 0 variables are exactly at the bounds

At iterate 0 f= 4.47164D+03 |proj g|= 4.47898D+03

At iterate 1 f= 1.20212D+03 |proj g|= 2.13266D+03
At iterate 1 f= 1.20212D+03 |proj g|= 2.13266D+03

At iterate 2 f= 2.16532D+02 |proj g|= 1.90519D+02
At iterate 2 f= 2.16532D+02 |proj g|= 1.90519D+02

At iterate 3 f= 2.07552D+02 |proj g|= 1.06071D+02
At iterate 3 f= 2.07552D+02 |proj g|= 1.06071D+02

At iterate 4 f= 1.70033D+02 |proj g|= 3.48082D+02

At iterate 5 f= 1.64800D+02 |proj g|= 3.74180D+02
At iterate 5 f= 1.64800D+02 |proj g|= 3.74180D+02

At iterate 6 f= 1.38087D+02 |proj g|= 1.31340D+02
At iterate 6 f= 1.38087D+02 |proj g|= 1.31340D+02

At iterate 7 f= 1.34855D+02 |proj g|= 1.45391D+01
At iterate 7 f= 1.34855D+02 |proj g|= 1.45391D+01

At iterate 8 f= 1.34599D+02 |proj g|= 1.58968D+01

At iterate 9 f= 1.32261D+02 |proj g|= 8.46707D+01

(continues on next page)

2.1. Train a Stillinger-Weber potential 9

KLIFF Documentation, Release 0.4.3

(continued from previous page)

At iterate 10 f= 1.26954D+02 |proj g|= 2.36049D+02
At iterate 10 f= 1.26954D+02 |proj g|= 2.36049D+02

At iterate 11 f= 1.20788D+02 |proj g|= 2.42511D+02
At iterate 11 f= 1.20788D+02 |proj g|= 2.42511D+02

At iterate 12 f= 9.84653D+01 |proj g|= 2.90333D+02
At iterate 12 f= 9.84653D+01 |proj g|= 2.90333D+02

At iterate 13 f= 7.92970D+01 |proj g|= 1.27395D+02
At iterate 13 f= 7.92970D+01 |proj g|= 1.27395D+02

At iterate 14 f= 6.33426D+01 |proj g|= 1.12669D+02
At iterate 14 f= 6.33426D+01 |proj g|= 1.12669D+02

At iterate 15 f= 5.95658D+01 |proj g|= 2.50284D+02
At iterate 15 f= 5.95658D+01 |proj g|= 2.50284D+02

At iterate 16 f= 5.19898D+01 |proj g|= 2.97639D+02
At iterate 16 f= 5.19898D+01 |proj g|= 2.97639D+02

At iterate 17 f= 3.31620D+01 |proj g|= 2.39904D+02

At iterate 18 f= 2.00817D+01 |proj g|= 2.43105D+01

At iterate 19 f= 1.58825D+01 |proj g|= 1.94992D+02

At iterate 20 f= 1.00645D+01 |proj g|= 3.25943D+02
At iterate 20 f= 1.00645D+01 |proj g|= 3.25943D+02

At iterate 21 f= 4.82724D+00 |proj g|= 2.33796D+01
At iterate 21 f= 4.82724D+00 |proj g|= 2.33796D+01

At iterate 22 f= 3.26863D+00 |proj g|= 7.48010D+01
At iterate 22 f= 3.26863D+00 |proj g|= 7.48010D+01

At iterate 23 f= 2.81339D+00 |proj g|= 2.37520D+01
At iterate 23 f= 2.81339D+00 |proj g|= 2.37520D+01

At iterate 24 f= 2.53369D+00 |proj g|= 2.24782D+01

At iterate 25 f= 2.31427D+00 |proj g|= 4.19973D+01
At iterate 25 f= 2.31427D+00 |proj g|= 4.19973D+01

At iterate 26 f= 1.82162D+00 |proj g|= 5.03854D+01
At iterate 26 f= 1.82162D+00 |proj g|= 5.03854D+01

At iterate 27 f= 1.04312D+00 |proj g|= 2.46183D+01

At iterate 28 f= 7.95851D-01 |proj g|= 1.50873D+01
At iterate 28 f= 7.95851D-01 |proj g|= 1.50873D+01

(continues on next page)

10 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

(continued from previous page)

At iterate 29 f= 7.40878D-01 |proj g|= 1.52873D+00
At iterate 29 f= 7.40878D-01 |proj g|= 1.52873D+00

At iterate 30 f= 7.05900D-01 |proj g|= 1.50051D+01
At iterate 30 f= 7.05900D-01 |proj g|= 1.50051D+01

At iterate 31 f= 6.95221D-01 |proj g|= 4.45629D+00
At iterate 31 f= 6.95221D-01 |proj g|= 4.45629D+00

At iterate 32 f= 6.94089D-01 |proj g|= 1.64352D-01
At iterate 32 f= 6.94089D-01 |proj g|= 1.64352D-01

At iterate 33 f= 6.94079D-01 |proj g|= 2.10362D-02
At iterate 33 f= 6.94079D-01 |proj g|= 2.10362D-02

At iterate 34 f= 6.94078D-01 |proj g|= 8.86005D-03

At iterate 35 f= 6.94078D-01 |proj g|= 8.83015D-03
At iterate 35 f= 6.94078D-01 |proj g|= 8.83015D-03

2023-08-01 22:27:43.444 | INFO | kliff.loss:minimize:312 - Finish minimization using␣
→˓method: L-BFGS-B.

At iterate 36 f= 6.94078D-01 |proj g|= 5.10514D-04

* * *

Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip = number of BFGS updates skipped
Nact = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 36 44 37 0 0 5.105D-04 6.941D-01

F = 0.69407801330347585

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

fun: 0.6940780133034758
hess_inv: <3x3 LbfgsInvHessProduct with dtype=float64>

jac: array([2.62567724e-05, -5.10513851e-04, 1.01474385e-05])
message: 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'

nfev: 176
nit: 36
njev: 44

status: 0
(continues on next page)

2.1. Train a Stillinger-Weber potential 11

KLIFF Documentation, Release 0.4.3

(continued from previous page)

success: True
x: array([14.93863362, 0.58740265, 2.20146126])

The minimization stops after running for 27 steps. After the minimization, we’d better save the model, which can be
loaded later for the purpose to do a retraining or evaluations. If satisfied with the fitted model, you can also write it as
a KIM model that can be used with LAMMPS_, GULP_, ASE_, etc. via the kim-api_.

model.echo_opt_params()
model.save("kliff_model.yaml")
model.write_kim_model()
model.load("kliff_model.yaml")

2023-08-01 22:27:43.455 | INFO | kliff.models.kim:write_kim_model:692 - KLIFF␣
→˓trained model write to `/Users/mjwen.admin/Packages/kliff/docs/source/tutorials/SW_
→˓StillingerWeber_1985_Si__MO_405512056662_006_kliff_trained`

#==
Model parameters that are optimized.
Note that the parameters are in the transformed space if
`params_transform` is provided when instantiating the model.
#==

A 1
1.4938633615724747e+01 1.0000000000000000e+00 2.0000000000000000e+01

B 1
5.8740264694219135e-01

sigma 1
2.0951000000000000e+00 fix

gamma 1
2.2014612645628717e+00

The first line of the above code generates the output. A comparison with the original parameters before carrying
out the minimization shows that we recover the original parameters quite reasonably. The second line saves the
fitted model to a file named kliff_model.pkl on the disk, and the third line writes out a KIM potential named
SW_StillingerWeber_1985_Si__MO_405512056662_006_kliff_trained.

.. seealso:: For information about how to load a saved model, see doc.modules.

%matplotlib inline

12 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

2.2 Train a neural network potential

In this tutorial, we train a neural network (NN) potential for silicon.

We are going to fit the NN potential to a training set of energies and forces from compressed and
stretched diamond silicon structures (the same training set used in tut_kim_sw). Download the train-
ing set :download:Si_training_set.tar.gz # <https://raw.githubusercontent.com/openkim/kliff/
master/examples/Si_training_set.tar.gz> (It will be automatically downloaded if it is not present.) The data
is stored in extended xyz format, and see doc.dataset for more information of this format.

Let’s first import the modules that will be used in this example.

from kliff import nn
from kliff.calculators import CalculatorTorch
from kliff.dataset import Dataset
from kliff.dataset.weight import Weight
from kliff.descriptors import SymmetryFunction
from kliff.loss import Loss
from kliff.models import NeuralNetwork
from kliff.utils import download_dataset

ModuleNotFoundError Traceback (most recent call last)
Cell In[2], line 1
----> 1 from kliff import nn

2 from kliff.calculators import CalculatorTorch
3 from kliff.dataset import Dataset

ModuleNotFoundError: No module named 'kliff'

2.2.1 Model

For a NN model, we need to specify the descriptor that transforms atomic environment information to the fingerprints,
which the NN model uses as the input. Here, we use the symmetry functions proposed by Behler and coworkers.

descriptor = SymmetryFunction(
cut_name="cos", cut_dists={"Si-Si": 5.0}, hyperparams="set51", normalize=True

)

The cut_name and cut_dists tell the descriptor what type of cutoff function to use and what the cutoff distances
are. hyperparams specifies the set of hyperparameters used in the symmetry function descriptor. If you prefer, you
can provide a dictionary of your own hyperparameters. And finally, normalize informs that the generated finger-
prints should be normalized by first subtracting the mean and then dividing the standard deviation. This normalization
typically makes it easier to optimize NN model.

We can then build the NN model on top of the descriptor.

N1 = 10
N2 = 10
model = NeuralNetwork(descriptor)
model.add_layers(

first hidden layer
nn.Linear(descriptor.get_size(), N1),

(continues on next page)

2.2. Train a neural network potential 13

KLIFF Documentation, Release 0.4.3

(continued from previous page)

nn.Tanh(),
second hidden layer
nn.Linear(N1, N2),
nn.Tanh(),
output layer
nn.Linear(N2, 1),

)
model.set_save_metadata(prefix="./kliff_saved_model", start=5, frequency=2)

In the above code, we build a NN model with an input layer, two hidden layer, and an output layer. The descriptor
carries the information of the input layer, so it is not needed to be specified explicitly. For each hidden layer, we first do a
linear transformation using nn.Linear(size_in, size_out) (essentially carrying out $y = xW+b$, where W is
the weight matrix of size size_in by size_out, and b is a vector of size size_out. Then we apply the hyperbolic
tangent activation function nn.Tanh() to the output of the Linear layer (i.e. y) so as to add the nonlinearity. We
use a Linear layer for the output layer as well, but unlike the hidden layer, no activation function is applied here. The
input size size_in of the first hidden layer must be the size of the descriptor, which is obtained using descriptor.
get_size(). For all other layers (hidden or output), the input size must be equal to the output size of the previous
layer. The out_size of the output layer must be 1 such that the output of the NN model gives the energy of the atom.

The set_save_metadata function call informs where to save intermediate models during the optimization (discussed
below), and what the starting epoch and how often to save the model.

2.2.2 Training set and calculator

The training set and the calculator are the same as explained in tut_kim_sw. The only difference is that we need to
use the :mod:~kliff.calculators.CalculatorTorch(), which is targeted for the NN model. Also, its create()
method takes an argument reuse to inform whether to reuse the fingerprints generated from the descriptor if it is
present. To train on gpu, set gpu=True in Calculator.

training set
dataset_path = download_dataset(dataset_name="Si_training_set")
dataset_path = dataset_path.joinpath("varying_alat")
weight = Weight(forces_weight=0.3)
tset = Dataset(dataset_path, weight)
configs = tset.get_configs()

calculator
calc = CalculatorTorch(model, gpu=False)
_ = calc.create(configs, reuse=False)

2.2.3 Loss function

KLIFF uses a loss function to quantify the difference between the training data and potential predictions and uses
minimization algorithms to reduce the loss as much as possible. In the following code snippet, we create a loss function
that uses the Adam optimizer to minimize it. The Adam optimizer supports minimization using mini-batches of data,
and here we use 100 configurations in each minimization step (the training set has a total of 400 configurations as can
be seen above), and run through the training set for 10 epochs. The learning rate lr used here is 0.001, and typically,
one may need to play with this to find an acceptable one that drives the loss down in a reasonable time.

loss = Loss(calc)
result = loss.minimize(method="Adam", num_epochs=10, batch_size=100, lr=0.001)

14 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

We can save the trained model to disk, and later can load it back if we want. We can also write the trained model to a
KIM model such that it can be used in other simulation codes such as LAMMPS via the KIM API.

model.save("final_model.pkl")
loss.save_optimizer_state("optimizer_stat.pkl")

model.write_kim_model()

%matplotlib inline

2.3 Train a neural network potential for SiC

In this tutorial, we train a neural network (NN) potential for a system containing two species: Si and C. This is very
similar to the training for systems containing a single specie (take a look at tut_nn for Si if you haven’t yet).

from kliff import nn
from kliff.calculators.calculator_torch import CalculatorTorchSeparateSpecies
from kliff.dataset import Dataset
from kliff.dataset.weight import Weight
from kliff.descriptors import SymmetryFunction
from kliff.loss import Loss
from kliff.models import NeuralNetwork
from kliff.utils import download_dataset

descriptor = SymmetryFunction(
cut_name="cos",
cut_dists={"Si-Si": 5.0, "C-C": 5.0, "Si-C": 5.0},
hyperparams="set51",
normalize=True,

)

ModuleNotFoundError Traceback (most recent call last)
Cell In[2], line 1
----> 1 from kliff import nn

2 from kliff.calculators.calculator_torch import CalculatorTorchSeparateSpecies
3 from kliff.dataset import Dataset

ModuleNotFoundError: No module named 'kliff'

We will create two models, one for Si and the other for C. The purpose is to have a separate set of parameters for Si
and C so that they can be differentiated.

N1 = 10
N2 = 10
model_si = NeuralNetwork(descriptor)
model_si.add_layers(

first hidden layer
nn.Linear(descriptor.get_size(), N1),
nn.Tanh(),
second hidden layer

(continues on next page)

2.3. Train a neural network potential for SiC 15

KLIFF Documentation, Release 0.4.3

(continued from previous page)

nn.Linear(N1, N2),
nn.Tanh(),
output layer
nn.Linear(N2, 1),

)
model_si.set_save_metadata(prefix="./kliff_saved_model_si", start=5, frequency=2)

N1 = 10
N2 = 10
model_c = NeuralNetwork(descriptor)
model_c.add_layers(

first hidden layer
nn.Linear(descriptor.get_size(), N1),
nn.Tanh(),
second hidden layer
nn.Linear(N1, N2),
nn.Tanh(),
output layer
nn.Linear(N2, 1),

)
model_c.set_save_metadata(prefix="./kliff_saved_model_c", start=5, frequency=2)

training set
dataset_path = download_dataset(dataset_name="SiC_training_set")
weight = Weight(forces_weight=0.3)
tset = Dataset(dataset_path, weight)
configs = tset.get_configs()

calculator
calc = CalculatorTorchSeparateSpecies({"Si": model_si, "C": model_c}, gpu=False)
_ = calc.create(configs, reuse=False)

loss
loss = Loss(calc)
result = loss.minimize(method="Adam", num_epochs=10, batch_size=4, lr=0.001)

We can save the trained model to disk, and later can load it back if we want.

model_si.save("final_model_si.pkl")
model_c.save("final_model_c.pkl")
loss.save_optimizer_state("optimizer_stat.pkl")

%matplotlib inline

16 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

2.4 Parameter transformation for the Stillinger-Weber potential

Parameters in the empirical interatomic potential are often restricted by some physical constraints. As an example, in
the Stillinger-Weber (SW) potential, the energy scaling parameters (e.g., A and B) and the length scaling parameters
(e.g., sigma and gamma) are constrained to be positive.

Due to these constraints, we might want to work with the log of the parameters, i.e., log(A), log(B), log(sigma),
and log(gamma) when doing the optimization. After the optimization, we can transform them back to the original
parameter space using an exponential function, which will guarantee the positiveness of the parameters.

In this tutorial, we show how to apply parameter transformation to the SW potential for silicon that is archived on
OpenKIM_. Compare this with tut_kim_sw.

To start, let’s first install the SW model::

$ kim-api-collections-management install user SW_StillingerWeber_1985_Si__MO_405512056662_006

.. seealso:: This installs the model and its driver into the User Collection. See install_model for more informa-
tion about installing KIM models.

This is

import numpy as np

from kliff.calculators import Calculator
from kliff.dataset import Dataset
from kliff.dataset.weight import Weight
from kliff.loss import Loss
from kliff.models import KIMModel
from kliff.models.parameter_transform import LogParameterTransform
from kliff.utils import download_dataset

ModuleNotFoundError Traceback (most recent call last)
Cell In[2], line 3

1 import numpy as np
----> 3 from kliff.calculators import Calculator

4 from kliff.dataset import Dataset
5 from kliff.dataset.weight import Weight

ModuleNotFoundError: No module named 'kliff'

Before creating a KIM model for the SW potential, we first instantiate the parameter transformation class that we want
to use. kliff has a built-in log-transformation; however, extending it to other parameter transformation can be done
by creating a subclass of :class:~kliff.models.parameter_transform.ParameterTransform.

To make a direct comparison to tut_kim_sw, in this tutorial we will apply log-transformation to parameters A, B,
sigma, and gamma, which correspond to energy and length scales.

transform = LogParameterTransform(param_names=["A", "B", "sigma", "gamma"])
model = KIMModel(

model_name="SW_StillingerWeber_1985_Si__MO_405512056662_006",
params_transform=transform,

)
model.echo_model_params(params_space="original")

2.4. Parameter transformation for the Stillinger-Weber potential 17

KLIFF Documentation, Release 0.4.3

model.echo_model_params(params_space="original") above will print out parameter values in the orig-
inal, untransformed space, i.e., the original parameterization of the model. If we supply the argument
params_space="transformed", then the printed parameter values are given in the transformed space, e.g., log space
(below). The values of the other parameters are not changed.

model.echo_model_params(params_space="original")

Compare the output of params_space="transformed" and params_space="original", you can see that the val-
ues of A, B, sigma, and gamma are in the log space after the transformation.

Next, we will set up the initial guess of the parameters to optimize. A value of "default" means the initial guess will
be directly taken from the value already in the model.

model.set_opt_params(
A=[[np.log(5.0), np.log(1.0), np.log(20)]],
B=[["default"]],
sigma=[[np.log(2.0951), "fix"]],
gamma=[[np.log(1.5)]],

)
model.echo_opt_params()

We can show the parameters we’ve just set by model.echo_opt_params().

Once we set the model and the parameter transformation scheme, then further calculations, e.g., training the model,
will be performed using the transformed space and can be done in the same way as in tut_kim_sw.

Training set
dataset_path = download_dataset(dataset_name="Si_training_set")
weight = Weight(energy_weight=1.0, forces_weight=0.1)
tset = Dataset(dataset_path, weight)
configs = tset.get_configs()

Calculator
calc = Calculator(model)
_ = calc.create(configs)

Loss function and model training
steps = 100
loss = Loss(calc, nprocs=2)
loss.minimize(method="L-BFGS-B", options={"disp": True, "maxiter": steps})

model.echo_model_params(params_space="original")

The optimized parameter values from this model training are very close, if not the same, as in tut_kim_sw. This is
expected for the simple tutorial example considered. But for more complex models, training in a transformed space
can make it much easier for the optimizer to navigate the parameter space.

%matplotlib inline

18 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

2.5 MCMC sampling

In this example, we demonstrate how to perform uncertainty quantification (UQ) using parallel tempered MCMC
(PTMCMC). We use a Stillinger-Weber (SW) potential for silicon that is archived in OpenKIM_.

For simplicity, we only set the energy-scaling parameters, i.e., A and lambda as the tunable parameters. Furthermore,
these parameters are physically constrained to be positive, thus we will work in log parameterization, i.e. log(A) and
log(lambda). These parameters will be calibrated to energies and forces of a small dataset, consisting of 4 compressed
and stretched configurations of diamond silicon structure.

To start, let’s first install the SW model::

$ kim-api-collections-management install user SW_StillingerWeber_1985_Si__MO_405512056662_006

.. seealso:: This installs the model and its driver into the User Collection. See install_model for more informa-
tion about installing KIM models.

from multiprocessing import Pool

import numpy as np
from corner import corner

from kliff.calculators import Calculator
from kliff.dataset import Dataset
from kliff.dataset.weight import MagnitudeInverseWeight
from kliff.loss import Loss
from kliff.models import KIMModel
from kliff.models.parameter_transform import LogParameterTransform
from kliff.uq import MCMC, autocorr, mser, rhat
from kliff.utils import download_dataset

ModuleNotFoundError Traceback (most recent call last)
Cell In[2], line 4

1 from multiprocessing import Pool
3 import numpy as np

----> 4 from corner import corner
6 from kliff.calculators import Calculator
7 from kliff.dataset import Dataset

ModuleNotFoundError: No module named 'corner'

Before running MCMC, we need to define a loss function and train the model. More detail information about this step
can be found in tut_kim_sw and tut_params_transform.

Instantiate a transformation class to do the log parameter transform
param_names = ["A", "lambda"]
params_transform = LogParameterTransform(param_names)

Create the model
model = KIMModel(

model_name="SW_StillingerWeber_1985_Si__MO_405512056662_006",
params_transform=params_transform,

)

(continues on next page)

2.5. MCMC sampling 19

KLIFF Documentation, Release 0.4.3

(continued from previous page)

Set the tunable parameters and the initial guess
opt_params = {

"A": [["default", -8.0, 8.0]],
"lambda": [["default", -8.0, 8.0]],

}

model.set_opt_params(**opt_params)
model.echo_opt_params()

Get the dataset and set the weights
dataset_path = download_dataset(dataset_name="Si_training_set_4_configs")
Instantiate the weight class
weight = MagnitudeInverseWeight(

weight_params={
"energy_weight_params": [0.0, 0.1],
"forces_weight_params": [0.0, 0.1],

}
)
Read the dataset and compute the weight
tset = Dataset(dataset_path, weight=weight)
configs = tset.get_configs()

Create calculator
calc = Calculator(model)
ca = calc.create(configs)

Instantiate the loss function
residual_data = {"normalize_by_natoms": False}
loss = Loss(calc, residual_data=residual_data)

Train the model
loss.minimize(method="L-BFGS-B", options={"disp": True})
model.echo_opt_params()

To perform MCMC simulation, we use :class:~kliff.uq.MCMC.This class interfaces with ptemcee_ Python package
to run PTMCMC, which utilizes the affine invariance property of MCMC sampling. We simulate MCMC sampling at
several different temperatures to explore the effect of the scale of bias and overall error bars.

Define some variables that correspond to the dimensionality of the problem
ntemps = 4 # Number of temperatures to simulate
ndim = calc.get_num_opt_params() # Number of parameters
nwalkers = 2 * ndim # Number of parallel walkers to simulate

We start by instantiating :class:~kliff.uq.MCMC. This requires :class:~kliff.loss.Loss instance to construct the
likelihood function. Additionally, we can specify the prior (or log-prior to be more precise) via the logprior_fn
argument, with the default option be a uniform prior that is bounded over a finite range that we specify via the
logprior_args argument.

To specify the sampling temperatures to use, we can use the arguments ntemps and Tmax_ratio to set how many
temperatures to simulate and the ratio of the highest temperature to the natural temperature T_0, respectively. The
default values of ntemps and Tmax_ratio are 10 and 1.0, respectively. Then, an internal function will create a list of
logarithmically spaced points from $T = 1.0$ to $T = T_{\text{max_ratio}} \times T_0$. Alternatively, we can also
give a list of the temperatures via Tladder argument, which will overwrites ntemps and Tmax_ratio.

20 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

The sampling processes can be parallelized by specifying the pool. Note that the pool needs to be declared after
instantiating :class:~kliff.uq.MCMC, since the posterior function is defined during this process.

Set the boundaries of the uniform prior
bounds = np.tile([-8.0, 8.0], (ndim, 1))

It is a good practice to specify the random seed to use in the calculation to generate
a reproducible simulation.
seed = 1717
np.random.seed(seed)

Create a sampler
sampler = MCMC(

loss,
ntemps=ntemps,
logprior_args=(bounds,),
random=np.random.RandomState(seed),

)
Declare a pool to use parallelization
sampler.pool = Pool(nwalkers)

To run the MCMC sampling, we use :meth:~kliff.uq.MCMC.run_mcmc. This function requires us to provide initial
states p_0 for each temperature and walker. We also need to specify the number of steps or iterations to take.

Initial starting point. This should be provided by the user.
p0 = np.empty((ntemps, nwalkers, ndim))
for ii, bound in enumerate(bounds):

p0[:, :, ii] = np.random.uniform(*bound, (4, 4))

Run MCMC
sampler.run_mcmc(p0, 5000)
sampler.pool.close()

Retrieve the chain
chain = sampler.chain

The resulting chains still need to be processed. First, we need to discard the first few iterations in the beginning of each
chain as a burn-in time. This is similar to the equilibration time in a molecular dynamic simulation before we can start
the measurement. KLIFF provides a function to estimate the burn-in time, based on the Marginal Standard Error Rule
(MSER). This can be accessed via :func:~kliff.uq.mcmc_utils.mser.

Estimate equilibration time using MSER for each temperature, walker, and dimension.
mser_array = np.empty((ntemps, nwalkers, ndim))
for tidx in range(ntemps):

for widx in range(nwalkers):
for pidx in range(ndim):

mser_array[tidx, widx, pidx] = mser(
chain[tidx, widx, :, pidx], dmin=0, dstep=10, dmax=-1

)

burnin = int(np.max(mser_array))
print(f"Estimated burn-in time: {burnin}")

After discarding the first few iterations as the burn-in time, we only want to keep every τ-th iteration from the
remaining chain, where τ is the autocorrelation length, to ensure uncorrelated samples. This calculation can be

2.5. MCMC sampling 21

KLIFF Documentation, Release 0.4.3

done using :func:~kliff.uq.mcmc_utils.autocorr.

Estimate the autocorrelation length for each temperature
chain_no_burnin = chain[:, :, burnin:]

acorr_array = np.empty((ntemps, nwalkers, ndim))
for tidx in range(ntemps):

acorr_array[tidx] = autocorr(chain_no_burnin[tidx], c=1, quiet=True)

thin = int(np.ceil(np.max(acorr_array)))
print(f"Estimated autocorrelation length: {thin}")

Finally, after obtaining the independent samples, we need to assess whether the resulting samples have converged to a
stationary distribution, and thus a good representation of the actual posterior. This is done by computing the potential
scale reduction factor (PSRF), denoted by \hat{R}^p. The value of \hat{R}^p declines to 1 as the number of
iterations goes to infinity. A common threshold is about 1.1, but higher threshold has also been used.

Assess the convergence for each temperature
samples = chain_no_burnin[:, :, ::thin]

threshold = 1.1 # Threshold for rhat
rhat_array = np.empty(ntemps)
for tidx in range(ntemps):

rhat_array[tidx] = rhat(samples[tidx])

print(f"$\hat{{r}}^p$ values: {rhat_array}")

Notice that in this case, $\hat{R}^p < 1.1$ for all temperatures. When this criteria is not satisfied, then the sampling
process should be continued. Note that some sampling temperatures might converge at slower rates compared to the
others.

After obtaining the independent samples from the MCMC sampling, the uncertainty of the parameters can be obtained
by observing the distribution of the samples. As an example, we will use corner_ Python package to present the MCMC
result at sampling temperature 1.0 as a corner plot.

Plot samples at T=1.0
corner(samples[0].reshape((-1, ndim)), labels=[r"$\log(A)$", r"$\log(\lambda)$"])

2.6 Train a Lennard-Jones potential

In this tutorial, we train a Lennard-Jones potential that is build in KLIFF (i.e. not models archived on OpenKIM_).
From a user’s perspective, a KLIFF built-in model is not different from a KIM model.

Compare this with tut_kim_sw.

from kliff.calculators import Calculator
from kliff.dataset import Dataset
from kliff.loss import Loss
from kliff.models import LennardJones
from kliff.utils import download_dataset

training set
dataset_path = download_dataset(dataset_name="Si_training_set_4_configs")

(continues on next page)

22 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

(continued from previous page)

tset = Dataset(dataset_path)
configs = tset.get_configs()

calculator
model = LennardJones()
model.echo_model_params()

fitting parameters
model.set_opt_params(sigma=[["default"]], epsilon=[["default"]])
model.echo_opt_params()

calc = Calculator(model)
calc.create(configs)

loss
loss = Loss(calc, nprocs=1)
result = loss.minimize(method="L-BFGS-B", options={"disp": True, "maxiter": 10})

print optimized parameters
model.echo_opt_params()
model.save("kliff_model.yaml")

2023-08-01 21:59:15.496 | INFO | kliff.dataset.dataset:_read:398 - 4 configurations␣
→˓read from /Users/mjwen.admin/Packages/kliff/docs/source/tutorials/Si_training_set_4_
→˓configs
2023-08-01 21:59:15.499 | INFO | kliff.calculators.calculator:create:107 - Create␣
→˓calculator for 4 configurations.
2023-08-01 21:59:15.499 | INFO | kliff.loss:minimize:310 - Start minimization using␣
→˓method: L-BFGS-B.
2023-08-01 21:59:15.500 | INFO | kliff.loss:_scipy_optimize:427 - Running in serial␣
→˓mode.
This problem is unconstrained.

#==
Available parameters to optimize.
Parameters in `original` space.
Model: LJ6-12
#==

name: epsilon
value: [1.]
size: 1

name: sigma
value: [2.]
size: 1

name: cutoff
value: [5.]
size: 1

(continues on next page)

2.6. Train a Lennard-Jones potential 23

KLIFF Documentation, Release 0.4.3

(continued from previous page)

#==
Model parameters that are optimized.
Note that the parameters are in the transformed space if
`params_transform` is provided when instantiating the model.
#==

sigma 1
2.0000000000000000e+00

epsilon 1
1.0000000000000000e+00

RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16
N = 2 M = 10

At X0 0 variables are exactly at the bounds

At iterate 0 f= 6.40974D+00 |proj g|= 2.92791D+01

At iterate 1 f= 2.98676D+00 |proj g|= 3.18782D+01

At iterate 2 f= 1.56102D+00 |proj g|= 1.02614D+01

At iterate 3 f= 9.61567D-01 |proj g|= 8.00167D+00

At iterate 4 f= 3.20489D-02 |proj g|= 7.63379D-01

At iterate 5 f= 2.42400D-02 |proj g|= 5.96998D-01

At iterate 6 f= 1.49914D-02 |proj g|= 6.87782D-01

At iterate 7 f= 9.48615D-03 |proj g|= 1.59376D-01

At iterate 8 f= 6.69609D-03 |proj g|= 1.14378D-01

2023-08-01 21:59:16.968 | INFO | kliff.loss:minimize:312 - Finish minimization using␣
→˓method: L-BFGS-B.

At iterate 9 f= 4.11024D-03 |proj g|= 3.20712D-01

At iterate 10 f= 2.97209D-03 |proj g|= 7.03411D-02

* * *

(continues on next page)

24 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

(continued from previous page)

Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip = number of BFGS updates skipped
Nact = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
2 10 13 1 0 0 7.034D-02 2.972D-03

F = 2.9720927488600178E-003

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT
#==
Model parameters that are optimized.
Note that the parameters are in the transformed space if
`params_transform` is provided when instantiating the model.
#==

sigma 1
2.0629054951532582e+00

epsilon 1
1.5614850326987884e+00

2.7 Train a linear regression potential

In this tutorial, we train a linear regression model on the descriptors obtained using the symmetry functions.

from kliff.calculators import CalculatorTorch
from kliff.dataset import Dataset
from kliff.descriptors import SymmetryFunction
from kliff.models import LinearRegression
from kliff.utils import download_dataset

descriptor = SymmetryFunction(
cut_name="cos", cut_dists={"Si-Si": 5.0}, hyperparams="set30", normalize=True

)

model = LinearRegression(descriptor)

training set
dataset_path = download_dataset(dataset_name="Si_training_set")
dataset_path = dataset_path.joinpath("varying_alat")
tset = Dataset(dataset_path)
configs = tset.get_configs()

(continues on next page)

2.7. Train a linear regression potential 25

KLIFF Documentation, Release 0.4.3

(continued from previous page)

calculator
calc = CalculatorTorch(model)
calc.create(configs, reuse=False)

2023-08-01 21:59:01.754 | INFO | kliff.dataset.dataset:_read:398 - 400␣
→˓configurations read from /Users/mjwen.admin/Packages/kliff/docs/source/tutorials/Si_
→˓training_set/varying_alat
2023-08-01 21:59:01.755 | INFO | kliff.calculators.calculator_torch:_get_device:592 -
→˓ Training on cpu
2023-08-01 21:59:01.756 | INFO | kliff.descriptors.descriptor:generate_
→˓fingerprints:103 - Start computing mean and stdev of fingerprints.
2023-08-01 21:59:11.127 | INFO | kliff.descriptors.descriptor:generate_
→˓fingerprints:120 - Finish computing mean and stdev of fingerprints.
2023-08-01 21:59:11.129 | INFO | kliff.descriptors.descriptor:generate_
→˓fingerprints:128 - Fingerprints mean and stdev saved to `fingerprints_mean_and_stdev.
→˓pkl`.
2023-08-01 21:59:11.129 | INFO | kliff.descriptors.descriptor:_dump_fingerprints:163␣
→˓- Pickling fingerprints to `fingerprints.pkl`
2023-08-01 21:59:11.131 | INFO | kliff.descriptors.descriptor:_dump_fingerprints:175␣
→˓- Processing configuration: 0.
2023-08-01 21:59:11.199 | INFO | kliff.descriptors.descriptor:_dump_fingerprints:175␣
→˓- Processing configuration: 100.
2023-08-01 21:59:11.261 | INFO | kliff.descriptors.descriptor:_dump_fingerprints:175␣
→˓- Processing configuration: 200.
2023-08-01 21:59:11.325 | INFO | kliff.descriptors.descriptor:_dump_fingerprints:175␣
→˓- Processing configuration: 300.
2023-08-01 21:59:11.386 | INFO | kliff.descriptors.descriptor:_dump_fingerprints:218␣
→˓- Pickle 400 configurations finished.

We can train a linear regression model by minimizing a loss function as discussed in tut_nn. But linear regression
model has analytic solutions, and thus we can train the model directly by using this feature. This can be achieved by
calling the fit() function of its calculator.

fit the model
calc.fit()

save model
model.save("linear_model.pkl")

2023-08-01 21:59:11.626 | INFO | kliff.models.linear_regression:fit:42 - Finished␣
→˓fitting model "LinearRegression"

Finished fitting model "LinearRegression"

26 Chapter 2. Tutorials

CHAPTER

THREE

THEORY

A parametric potential typically takes the form

𝒱 = 𝒱(𝑟1, . . . , 𝑟𝑁𝑎
, 𝑍1, . . . , 𝑍𝑁𝑎

; 𝜃)

where 𝑟1, . . . , 𝑟𝑁𝑎
and 𝑍1, . . . , 𝑍𝑁𝑎

are the coordinates and species of a system of 𝑁𝑎 atoms, respectively, and 𝜃
denotes a set of fitting parameters. For notational simplicity, in the following discussion, we assume that the atomic
species information is implicitly carried by the coordinates and thus we can exclude 𝑍 from the functional form, and
use 𝑅 to denote the coordinates of all atoms in the configuration. Then we have

𝒱 = 𝒱(𝑅; 𝜃).

A potential parameterization process is typically formulated as a weighted least-squares minimization problem, where
we adjust the potential parameters 𝜃 so as to reproduce a training set of reference data obtained from experiments and/or
first-principles computations. Mathematically, we hope to minimize a loss function

ℒ(𝜃) = 1

2

𝑁𝑝∑︁
𝑖=1

‖𝑤𝑖(𝑝𝑖(𝒱(𝑅𝑖; 𝜃))− 𝑞𝑖)‖2

with respect to 𝜃, where {𝑞1, . . . , 𝑞𝑁𝑝
} is a training set of 𝑁𝑝 reference data, 𝑝𝑖 is the corresponding prediction for 𝑞𝑖

computed from the potential (as indicated by its argument), ‖ · ‖ denote the 𝐿2 norm, and 𝑤𝑖 is the weight for the 𝑖-th
data point. We call

𝑢 = 𝑝(𝒱(𝑅; 𝜃))− 𝑞

the residual function that characterizes the difference between the potential predictions and the reference data for a set
of properties.

Generally speaking, 𝑞 can be a collection of any material properties considered important for a given application, such
as the cohesive energy, equilibrium lattice constant, and elastic constants of a given crystal phase. These materials
properties can be obtained from experiments and/or first-principles calculations. However, nowadays, most of the
potentials are trained using the force-matching scheme, where the potential is trained to a large set of forces on atoms
(and/or energies, stresses) obtained by first-principles calculations for a set of atomic configurations. This is extremely
true for machine learning potentials, where a large set of training data is necessary, and it seems impossible to collect
sufficient number of material properties for the training set.

The reference 𝑞 and the prediction 𝑝 are typically represented as vectors such that 𝑞[𝑚] is the 𝑚-th reference property
and 𝑝[𝑚] is the corresponding 𝑚-th prediction obtained from the potential. Assuming we want to fit a potential to
energy and forces, then 𝑞 is a vector of size 1 + 3𝑁𝑎, in which 𝑁𝑎 is the number of atoms in a configuration, with

𝑞[0] = 𝐸ref

𝑞[1] = 𝑓0,𝑥
ref , 𝑞[2] = 𝑓0,𝑦

ref , 𝑞[3] = 𝑓0,𝑧
ref ,

𝑞[4] = 𝑓1,𝑥
ref , 𝑞[5] = 𝑓1,𝑦

ref , 𝑞[6] = 𝑓1,𝑧
ref ,

· · ·

𝑞[3𝑁𝑎 − 2] = 𝑓𝑁𝑎−1,𝑥
ref , 𝑞[3𝑁𝑎 − 1] = 𝑓𝑁𝑎−1,𝑦

ref , 𝑞[3𝑁𝑎] = 𝑓𝑁𝑎−1,𝑧
ref ,

27

KLIFF Documentation, Release 0.4.3

where 𝐸ref is the reference energy, and 𝑓 𝑖,𝑥
ref , 𝑓 𝑖,𝑦

ref , and 𝑓 𝑖,𝑧
ref denote the 𝑥-, 𝑦-, and 𝑧-component of reference force on

atom 𝑖, respectively. In other words, we put the energy as the 0th component of 𝑞, and then put the force on the first
atom as the 1st to 3rd components of 𝑞, the force on the second atom the next three components till the forces on all
atoms are placed in 𝑞. In the same fashion, we can construct the prediction vector 𝑝, and then to compute the residual
vector.

Note: We use boldface with subscript to denote a data point (e.g. 𝑞𝑖 means the 𝑖-th data point in the training set), and
use normal text with square bracket to denote the component of a data point (e.g. : 𝑞[𝑚] indicates the 𝑚-th component
of a general data point 𝑞.

If stress is used in the fitting, 𝑞[3𝑁𝑎] to 𝑞[3𝑁𝑎 + 5] will store the reference Voigt stress 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜎𝑦𝑧, 𝜎𝑥𝑦, 𝜎𝑥𝑧 ,
and, of course, 𝑝[3𝑁𝑎] to 𝑝[3𝑁𝑎 + 5] are the corresponding predictions computed from the potential.

The objective of the parameterization process is to find a set of parameters 𝜃 of potential that reproduce the reference
data as well as possible.

28 Chapter 3. Theory

CHAPTER

FOUR

FREQUENTLY USED MODULES

In this section, we introduce some of the most frequently used modules. See Package Reference for their APIs and
other modules in KLIFF.

Quick links

Models Dataset
Calculators Loss

Note: See also Package Reference.

4.1 Dataset

This Module contains classes and functions to deal with dataset.

A dataset is comprised of a set of configurations, which provide the training data to optimize potential (parameters) or
provide the test data to test the quality of potential.

A configuration should have three lattice vectors of the simulation cell, flags to indicate periodic boundary con-
ditions (PBC), species and coordinates of all atoms. These collectively define a configuration and are, typically,
considered as the input in terms of potential fitting. A configuration should also contain a set of output (target), which
the optimization algorithm adjust the potential (parameters) to match. For example, if the force-matching scheme is
used for the fitting, the output can be the forces on individual atoms. The currently supported outputs include energy,
forces, and stress.

See also:

See kliff.dataset.Configuration for a complete list of the member functions of the Configuration class.

To create a data, do:

from kliff.dataset import Dataset
path = 'path_to_my_dataset_files'
dset = Dataset(path, format='extxyz')

where path is a file storing a configuration or a directory containing multiple files. If given a directory, all the files in
this directory and its subdirectories with the extension corresponding to the specified format will be read. For example,
if format='extxyz', all the files with an extension .xyz in path and its subdirectories will be read.

The size of the dataset can be obtained by:

29

KLIFF Documentation, Release 0.4.3

dset_size = dset.get_num_configs()

and a list of configurations constituting the dataset can be obtained by:

configs = dset.get_configs()

See also:

See kliff.dataset.Dataset for a complete list of the member functions of the Dataset class.

4.1.1 Inspect dataset

KLIFF provides a command line tool to get a statistics of a dataset of files. For example, for the Si_training_set.
tar.gz (the tarball can be extracted by: $ tar xzf Si_training_set.tar.gz), running:

$ kliff dataset --count Si_training_set

prints out the below information:

==
KLIFF Dataset Count

Notation: " dir_name (a/b)"
a: number of .xyz files in the directory "dir_name"
b: number of .xyz files in the directory "dir_name" and its subdirectories

Si_training_set (0/1000)
NVT_runs (600/600)
varying_alat (400/400)

==

4.1.2 Dataset Format

More than often, your dataset is generated from first-principles calculations using packages like VASP, SIESTA, and
Quantum Espresso among others. Their output file format may not be support by KLIFF. You can use parse these output
to get the necessary data, and then convert to the format supported by KLIFF using the functions kliff.dataset.
write_config() and kliff.dataset.read_config().

Currently supported dataset format include:

• extended XYZ (.xyz)

30 Chapter 4. Frequently Used Modules

KLIFF Documentation, Release 0.4.3

Extended XYZ

The Extended XYZ format is an enhanced version of the basic XYZ format that allows extra columns to be present in
the file for additional per-atom properties as well as standardizing the format of the comment line to include the cell
lattice and other per-frame parameters. It typically has the .xyz extension.

It would be easy to explain the format with an example. Below is an example of the extended XYZ format supported
by KLIFF:

8
Lattice="4.8879 0 0 0 4.8879 0 0 0 4.8879" PBC="1 1 1" Energy=-29.3692121943 ␣
→˓Properties=species:S:1:pos:R:3:force:R:3
Si 0.00000e+00 0.00000e+00 0.00000e+00 2.66454e-15 -8.32667e-17 4.02456e-16
Si 2.44395e+00 2.44395e+00 0.00000e+00 1.62370e-15 7.21645e-16 8.46653e-16
Si 0.00000e+00 2.44395e+00 2.44395e+00 0.00000e+00 3.60822e-16 2.01228e-16
Si 2.44395e+00 0.00000e+00 2.44395e+00 1.33227e-15 -4.44089e-16 8.74350e-16
Si 1.22198e+00 1.22198e+00 1.22198e+00 4.44089e-15 1.80411e-16 1.87350e-16
Si 3.66593e+00 3.66593e+00 1.22198e+00 9.29812e-16 -2.67841e-15 -3.22659e-16
Si 1.22198e+00 3.66593e+00 3.66593e+00 5.55112e-17 3.96905e-15 8.87786e-16
Si 3.66593e+00 1.22198e+00 3.66593e+00 -2.60902e-15 -9.43690e-16 6.37999e-16

• The first line list the number of atoms in the system.

• The second line follow the key=value structure. if a value contains any space (e.g. Lattice), it should be
placed in the quotation marks " ". The supported keys are:

– Lattice represents the three Cartesian lattice vectors: the first 3 numbers denote 𝑎1, the next three numbers
denote 𝑎2, and the last 3 numbers denote 𝑎3. Note that 𝑎1, 𝑎2, and 𝑎3 should follow the right-hand rule
such that the volume of the cell can be obtained by (𝑎1 × 𝑎2) · 𝑎3.

– PBC. Three integers of 1 or 0 (or three characters of T or F) to indicate whether to use periodic boundary
conditions along 𝑎1, 𝑎2, and a3, respectively.

– Energy. A real value of the total potential energy of the system.

– Properties provides information of the names, size, and types of the data that are listed in the body part
of the file. For example, the Properties in the above example means that the atomic species information
(a string) is listed in the first column of the body, the next three columns list the atomic coordinates, and
the last three columns list the forces on atoms.

Each line in the body lists the information, indicated by Properties in the second line, for one atom in the system,
taking the form:

species x y z fx fy fz

The coordinates x y z should be given in Cartesian values, not fractional values. The forces fx fy fz can be skipped
if you do not want to use them.

Note: An atomic configuration stored in the extended XYZ format can be visualized using the OVITO program.

4.1. Dataset 31

https://en.wikipedia.org/wiki/XYZ_file_format
http://ovito.org

KLIFF Documentation, Release 0.4.3

4.1.3 Weight

As mentioned in Theory, the reference 𝑞 can be any material properties, which can carry different physical units. The
weight in the loss function can be used to put quantities with different units on a common scale. The weights also give
us access to set which properties or configurations are more important, for example, in developing a potential for a
certain application (see Define your weight class).

KLIFF uses weight class to compute and store the weight information for each configuration. The basic structure of
the class is shown below.

class Weight():
"""A class to deal with weights for each configuration."""

def __init__(self):
#... Do necessary steps to initialize the class

def compute_weight(self, config):
#... Compute the weights for the given configutation

@property
def some_weight(self):

#... Add properties to retrieve the weight values

Default weight class

KLIFF has several built-in weight classes. As a default, KLIFF uses kliff.dataset.weight.Weight, which put a
single weight for each property.

from kliff.dataset import Dataset
from kliff.dataset.weight import Weight

path = 'path_to_my_dataset_files'
weight = Weight()
dset = Dataset(path, weight=weight, format='extxyz')

Retrieve the weights
config_weight = configs[0].config_weight
energy_weight = configs[0].energy_weight
forces_weight = configs[0].forces_weight
stress_weight = configs[0].stress_weight

config_weight is the weight for the configuration and energy_weight, forces_weight, and stress_weigth are
the weights for energy, forces, and stress, respectively. The default value for each weight is 1.0.

One can also specify different values for these weights. For example, one might want to weigh the energy 10 times as
the forces. It can be done by specifying the weight values while instantiating kliff.dataset.weight.Weight.

weight = Weight(
config_weight=1.0, energy_weight=10.0, forces_weight=1.0, stress_weight=1.0

)

Note: Another use case is if one wants to, for example, exclude the energy in the loss function, which can be done by

32 Chapter 4. Frequently Used Modules

KLIFF Documentation, Release 0.4.3

setting energy_weight=0.0.

Magnitude-inverse weight

KLIFF also provides another weight class that computes the weight based on the magnitude of the data, applying
different weight on each data point. The weight calculation is motivated by formulation suggested by Lenosky et al.
[lenosky1997],

1

𝑤𝑖

2

= 𝑐21 + 𝑐22‖𝑝𝑖‖2

𝑐1 and 𝑐2 are parameters to compute the weight. They can be thought as a padding and a fractional scaling terms. When
𝑝𝑖 corresponds to energy, the norm is the absolute value of the energy. When 𝑝𝑖 correspond to forces, the norm is a
vector norm of the force vector acting on the corresponding atom. This also mean that each force component acting on
the same atom will have the same weight. If 𝑝𝑖 correspond to stress, then the norm is a Frobenius norm of the stress
tensor, giving the same weight for each component in the stress tensor.

To use this weight, we instantiate MagnitudeInverseWeight weight class:

from kliff.dataset.weight import MagnitudeInverseWeight
weight = MagnitudeInverseWeight(

config_weight=1.0,
weight_params={

"energy_weight_params": [c1e, c2e],
"forces_weight_params": [c1f, c2f],
"stress_weight_params": [c1s, c2s],

}
)

config_weight specifies the weight for the entire configuration.

weight_params is a dictionary containing 𝑐1 and 𝑐2 for energy, forces, and stress. The default value is:

weight_params = {
"energy_weight_params": [1.0, 0.0],
"forces_weight_params": [1.0, 0.0],
"stress_weight_params": [1.0, 0.0],

}

Additionally, for each key, we can pass in a float, which set the value of 𝑐1 with 𝑐2 = 0.0.

Define your weight class

We can also define a custom weight class to use in KLIFF. As an example, suppose we are developing a potential that
will be used to investigate fracture properties. The training sets includes both configurations with and without cracks.
For this application, we might want to put larger weights for the configurations with cracks. Below is an example of
weight class that achieve this goal.

from kliff.dataset.weight import Weight

class WeightForCracks(Weight):
"""An example weight class that put larger weight on the configurations with
cracks. This class inherit from ``kliff.dataset.weight.Weight``. We just need to

(continues on next page)

4.1. Dataset 33

KLIFF Documentation, Release 0.4.3

(continued from previous page)

modify ``compute_weight`` method to put larger weight for the configurations with
cracks. Other modifications might need to be done for different weight class.
"""

def __init__(self, energy_weight, forces_weight):
super().__init__(energy_weight=energy_weight, forces_weight=forces_weight)

def compute_weight(self, config):
identifier = config.identifier
if 'with_cracks' in identifier:

self._config_weight = 10.0

With this weight class, we can use the built-in residual_fn to achieve the same result as the implementation in Use
your own residual function.

4.2 Models

4.2.1 KIM models

4.2.2 Neural network models

4.3 Descriptors

4.3.1 Symmetry functions

4.3.2 Bispectrum

4.4 Calculators

A calculator is the central agent that exchanges information between a model and the minimizer.

• It uses the computation methods provided by a model to calculate the energy, forces, etc. and pass these proper-
ties, together with the corresponding reference data, to Loss to construct a loss function to be minimized by the
optimizer.

• It also inquires the model to get parameters that are going to be optimized, and provide these parameters to the
optimizer, which will be used as the initial values by the optimizer to carry out the optimization.

• In the reverse direction, at each optimization step, the calculator grabs the new parameters from the optimizer
and update the model parameters with the new ones. So, in the next minimization step, the loss function will be
calculated using the new parameters.

A calculator for the physics-motivated potential can be created by:

from kliff.calculators import Calculator

model = ... # create a model
configs = ... # get a list of configurations
calc = Calculator(model)
calc.create(configs, use_energy=True, use_forces=True, use_stress=False)

34 Chapter 4. Frequently Used Modules

KLIFF Documentation, Release 0.4.3

It creates a calculator for a model (discussed in Models), and configs is a list of Configuration (discussed in
Dataset), for which the calculator is going to make predictions. use_energy, use_forces, and use_stress inform
the calculator whether energy, forces, and stress will be requested from the calculator. If the potential is to be trained
on energy only, it would be better to set use_forces and use_stress to False, which turns off the calculations for
forces and stress and thus can speed up the fitting process.

Other methods of the calculator include:

• Initialization: get_compute_arguments().

• Property calculation using a model: compute(), get_compute_arguments(), compute(), get_energy(),
get_forces(), get_stress(), get_prediction(), get_reference().

• Optimizing parameters: get_opt_params(), get_opt_params_bounds(), update_model_params().

See also:

See kliff.calculators.Calculator for a complete list of the member functions and their docs.

4.5 Loss

As discussed in Theory, we solve a minimization problem to fit the potential. For physics-motivated potentials, the
geodesic Levenberg-Marquardt (geodesicLM) minimization method [transtrum2012geodesicLM] can be used, which
has been shown to perform well for potentials in [wen2016potfit]. KLIFF also interacts with SciPy to utilize the zoo
of optimization methods there. For machine learning potentials, KLIFF wraps the optimization methods in PyTorch.

KLIFF provides a uniform interface to use all the optimization methods. To carry out optimization, first create a loss
object:

from kliff.loss import Loss

calculator = ... # create a calculator
Loss(calculator, nprocs=1, residual_fn=None, residual_data=None)

calculator (discussed in Calculators) provides predictions calculated using a potential and the corresponding refer-
ence data via get_prediction() and get_reference(), respectively, which the optimizer can be used to construct
the objective function.

nprocs informs KLIFF the number of cores that KLIFF can use to parallelize over the dataset to evaluate the objective
function.

residual_data is a dictionary that will be used by residual_fn to compute the residual. residual_data is op-
tional, and its default is:

residual_data = {'normalize_by_natoms': True}

The meaning of this value is made clear in the below discussion.

residual_fn is a function used to compute the residual. As discussed in Theory, the objective function is a sum of
the square of the norm of the residual of each individual configuration, i.e.

ℒ(𝜃) = 1

2

𝑁𝑝∑︁
𝑖=1

‖𝑤𝑖𝑢𝑖‖2

with the residual

𝑢𝑖 = 𝑝𝑖 − 𝑞𝑖,

4.5. Loss 35

https://scipy.org
https://pytorch.org

KLIFF Documentation, Release 0.4.3

in which 𝑝𝑖 is a vector of predictions computed using the potential for the 𝑖-th configuration, and 𝑞𝑖 is a vector of the
corresponding reference data. The residual is computed using the residual_fn, which should be of the form

def residual_fn(identifier, natoms, weight, prediction, reference, data):
"""A function to compute the residual for a configuration."""

... compute u based on p (prediction) and q (reference)
and it should be a vector
return u

In the above residual function,

• identifier is a (unique) str associated with the configuration, which is specified in Configuration. If
it is not provided there, identifier is default to the path to the file that storing the configuration, e.g.
Si_training_set/NVT_runs/T300_step100.xyz.

• natoms is an int denoting the number of atoms in the configuration.

• weight is a Weight instance that generates the weights from the configuration (see Weight).

• prediction is a vector of the prediction 𝑝 computed from the potential.

• reference is a vector of the corresponding reference data 𝑞.

• data is residual_data provided at the initialization of Loss. residual_data is a dictionary, with which the
user can provide extra information to residual_fn.

residual_fn is also optional, and it defaults to energy_forces_residual() discussed below.

4.5.1 Built-in residual function

KLIFF provides a number of residual functions readily to be plugged into Loss and let the wheel spin. For example,
the energy_forces_residual() that constructs the residual using energy and forces is defined as (in a nutshell):

def energy_forces_residual(identifier, natoms, weight, prediction, reference, data):

extract up the weight information
config_weight = weight.config_weight
energy_weight = weight.energy_weight
forces_weight = weight.forces_weight

obtain residual and properly normalize it
residual = config_weight * (prediction - reference)
residual[0] *= energy_weight
residual[1:] *= forces_weight

if data["normalize_by_natoms"]:
residual /= natoms

return residual

This residual function retrieves the weights for energy and forces f``weight`` instance and enables the normalization of
the residual based on the number of atoms. Normalization by the number of atoms makes each individual configuration
in the training set contributes equally to the loss function; otherwise, configurations with more atoms can dominate the
loss, which (most of the times) is not what we prefer.

One can provide a residual_data instead of using the default one to tune the loss, for example, if one wants to ignore
the normalization by the number of atoms.

36 Chapter 4. Frequently Used Modules

KLIFF Documentation, Release 0.4.3

from kliff.loss import Loss
from kliff.loss import energy_forces_residual

calculator = ... # create a calculator

provide my data
residual_data = {'normalize_by_natoms': False}
Loss(calculator, nprocs=1, residual_fn=energy_forces_residual, residual_data=residual_
→˓data)

Warning: Even though residual_fn and residual_data is optional, we strongly recommend the users to
explicitly provide them to reminder themselves what they are doing as done above.

See also:

See kliff.loss for other built-in residual functions.

4.5.2 Use your own residual function

The built-in residual function treats each configuration in the training set, and each atom in a configuration equally
important. Sometimes, this may not be what you want. In these cases, you can define and use your own residual_fn.

For example, if you are creating a potential that is going to be used to investigate fracture properties, and your training
set include both configurations with cracks and configurations without cracks, then you may want to weigh more for
the configurations with cracks.

from kliff.loss import Loss

define my own residual function
def residual_fn(identifier, natoms, weight, prediction, reference, data):

extract the weight information
config_weight = weight.config_weight
energy_weight = weight.energy_weight
forces_weight = weight.forces_weight

larger weight for configuration with cracks
if 'with_cracks' in identifer:

config_weight *= 10

normalize = data["normalize_by_natoms"]
if normalize:

energy_weight /= natoms
forces_weight /= natoms

obtain residual and properly normalize it
residual = config_weight * (prediction - reference)
residual[0] *= energy_weight
residual[1:] *= forces_weight

return residual
(continues on next page)

4.5. Loss 37

KLIFF Documentation, Release 0.4.3

(continued from previous page)

calculator = ... # create a calculator
loss = Loss(

calculator,
nprocs=1,
residual_fn=residual_fn,
residual_data={"normalize_by_natoms": True}

)

The above code takes advantage of identifier to distinguish configurations with cracks and without cracks, and then
weigh more for configurations with cracks.

For configurations with cracks, you may even want to weigh more for the atoms near the creak tip. Then you need to
identify which atoms are near the crack tip and manipulate the corresponding components of residual.

Note: If you are using your own residual_fn, its data argument can be completely ignored since it can be directly
provided in your own residual_fn.

See also:

See Define your weight class for an alternative implementation of this example.

Note: Handling the weight is preferably done using the weight class (see Weight) instead of in the residual function.

4.6 Uncertainty Quantification (UQ)

Uncertainty quantification (UQ) is an emerging field in applied mathematics that aims to quantify uncertainties in
mathematical models as a result of error propagation in the modeling process. This is especially important since we
use the model, i.e., the potential, to predict material properties that are not used in the training process. Thus, UQ
process is especially important to assess the reliability of these out-of-sample predictions.

Fig. 1: Illustration of general uncertainty quantification process. The error from the training data (represented by a
dashed ellipse on the bottom left plot) is propagated to the uncertainty of the model’s parameters (the ellipse in the
middle plot). Then, the uncertainty of the parameters is propagated forward further to the uncertainty of the material
properties of interest (the ellipse on the bottom right plot).

In
UQ
pro-
cess,
we
first
quan-
tify
the
un-
cer-
tainty
of
the
model
pa-
ram-
e-

38 Chapter 4. Frequently Used Modules

KLIFF Documentation, Release 0.4.3

ters
(rep-
re-
sented
by
the
dashed
el-
lipse
on
the
mid-
dle

plot of the figure above). Having found the parametric uncertainty, then we can propagate the uncertainty of the
parameters and get the uncertainty of the material properties of interest, e.g., by evaluating the ensemble that is
obtained from sampling the distribution of the parameters. As the first uncertainty propagation is more involved,
KLIFF implements tools to quantify the uncertainty of the parameters.

In KLIFF, the UQ tools are implemented in uq. In the current version, there are 2 methods implemented: Bayesian
MCMC sampling and bootstrapping, with the integration of other UQ methods will be added in the future.

4.6.1 MCMC

The Bayesian Markov chain Monte Carlo (MCMC) is the UQ method of choice for interatomic potentials. The distri-
bution of the parameters is given by the posterior 𝑃 (𝜃|𝑞). By Bayes’ theorem

𝑃 (𝜃|𝑞) ∝ 𝐿(𝜃|𝑞)× 𝜋(𝜃),

where 𝐿(𝜃|𝑞) is the likelihood (which encodes the information learned from the data) and 𝜋(𝜃) is the prior distribution.
Then, some MCMC algorithm is used to sample the posterior and the distribution of the parameters is inferred from
the distribution of the resulting samples.

The likelihood function is given by

𝐿(𝜃|𝑞) ∝ exp

(︂
−ℒ(𝜃)

𝑇

)︂
.

The inclusion of the sampling temperature 𝑇 is to account for model inadequacy, or bias, in the potential
[Kurniawan2022]. Frederiksen et al. (2004) [Frederiksen2004] suggest estimating the bias by setting the tempera-
ture to

𝑇0 =
2ℒ0

𝑁
,

whereℒ0 is the value of the loss function evaluated at the best fit parameters and𝑁 is the number of tunable parameters.

See also:

For more discussion about this formulation, see [KurniawanKLIFFUQ].

4.6. Uncertainty Quantification (UQ) 39

KLIFF Documentation, Release 0.4.3

Implementation

For the MCMC sampling, KLIFF adopts parallel-tempered MCMC (PTMCMC) methods, via the ptemcee Python
package, as a way to perform MCMC sampling with several different temperatures. Additionally, multiple parallel
walkers are deployed for each sampling temperature. PTMCMC has been widely used to improve the mixing rate of
the sampling. Furthermore, by sampling at several different temperatures, we can assess the effect of the size of the
bias to any conclusion drawn from the samples.

We start the UQ process by instantiating MCMC,

from kliff.uq import MCMC

loss = ... # define the loss function
sampler = MCMC(

loss, nwalkers, logprior_fn, logprior_args, ntemps, Tmax_ratio, Tladder, **kwargs
)

As a default, MCMC inherits from ptemcee.Sampler. The arguments to instantiate the sampler are:

• loss, which is a Loss instance. This is a required argument to construct the untempered likelihood function
(𝑇 = 1) and to compute 𝑇0.

• nwalkers specifies the number of parallel walkers to run for each sampling temperature. As a default, this
quantity is set to twice the number of parameters in the model.

• logprior_fn argument allows the user to specify the prior distribution 𝜋(𝜃) to use. The function should accept
an array of parameter values as input and compute the logarithm of the prior distribution. Note that the prior
distribution doesn’t need to be normalized. The default prior is a uniform distribution over a finite range. See
the next argument on how to set the boundaries of the uniform prior.

• logprior_args is a tuple that contains additional positional arguments needed by logprior_fn. If the default
uniform prior is used, then the boundaries of the prior support (where 𝜋(𝜃) > 0) need to be specified here as
a 𝑁 × 2 array, where the first and second columns of the array contain the lower and upper bound for each
parameter.

• ntemps specifies the number of temperatures to simulate.

• Tmax_ratio is used to set the highest temperature by 𝑇max = 𝑇max_ratio × 𝑇0. An internal function is used to
construct a list of logarithmically spaced ntemps points from 1.0 to 𝑇max, inclusive.

• Tladder allows user to specify a list of temperatures to use. This argument will overwrites ntemps and
Tmax_ratio.

• Other keyword arguments to be passed into ptemcee.Sampler needs to be specified in kwargs.

After the sampler is created, the MCMC run is done by calling run_mcmc().

p0 = ... # Define the initial position of each walker
sampler.run_mcmc(p0, iterations, *args, **kwargs)

The required arguments are:

• p0, which is a 𝐾 ×𝐿×𝑁 array containing the position of each walker for each temperature in parameter space,
where 𝐾, 𝐿, and 𝑁 are the number of temperatures, walkers, and parameters, respectively.

• iterations specifies the number of MCMC steps to take. Since the position of step 𝑖 in Markov chain only
depends on step (𝑖 − 1), it is possible to break up the MCMC run into smaller batches, with the note that the
initial positions of the current run needs to be set to the last positions of the previous run.

40 Chapter 4. Frequently Used Modules

https://github.com/willvousden/ptemcee/tree/1.0.0
https://github.com/willvousden/ptemcee/blob/1.0.0/ptemcee/sampler.py#L143-L199
https://github.com/willvousden/ptemcee/blob/1.0.0/ptemcee/sampler.py#L143-L199

KLIFF Documentation, Release 0.4.3

See also:

For other possible arguments, see also ptemcee.Sampler.run_mcmc.

The resulting chain can be retrieved via sampler.chain as a 𝐾 ×𝐿×𝑀 ×𝑁 array, where 𝑀 is the total number of
iterations.

Parallelization

In principle, parallelization for the MCMC run can be done in 2 places: in the likelihood (or loss function) evaluation
for each parameter set (see Run in parallel mode) and in the likelihood evaluation across different walkers. In the
current implementation we supports OpenMP-style parallelization in the loss evaluation and both OpenMP and MPI
for the sampling for different walkers when running MCMC sampling.

In general, parallelization in the sampling process is done by declaring a pool and setting it to sampler.pool prior to
running MCMC, for example:

from multiprocessing import Pool

sampler.pool = Pool(nprocs) # nprocs is the number of parallel processes to use
sampler.run_mcmc(p0, iterations, *args, **kwargs)

To do parallelization with MPI, we can utilize MPIPool from schwimmbad:

from schwimmbad import MPIPool

sampler.pool = MPIPool()
sampler.run_mcmc(p0, iterations, *args, **kwargs)

and run the Python script with mpiexec bash command.

If enough compute resources are available, we can also employ a hybrid parallelization, for example, using
multiprocessing in the loss evaluation (by specifying the argument nprocs > 1) and MPI in the likelihood evaluation
across different walkers. Then, we can run the Python script as follows.

$ export MPIEXEC_OPTIONS="--bind-to core --map-by slot:PE=<num_openmp_processes> port-
→˓bindings"
$ mpiexec -np <num_mpi_workers> ${MPIEXEC_OPTIONS} python script.py

MCMC analysis

The chains from the MCMC simulation need to be processed. In a nutshell, the steps to take are

• Estimate the burn-in time and discard it from the beginning of the chain,

• Estimate the autocorrelation length, 𝜏 , and only take every 𝜏 step from the remaining chain,

• Assess convergence of the samples, i.e., the remaining chain after the two steps above.

4.6. Uncertainty Quantification (UQ) 41

https://github.com/willvousden/ptemcee/blob/1.0.0/ptemcee/sampler.py#L272-L323
https://schwimmbad.readthedocs.io/

KLIFF Documentation, Release 0.4.3

Burn-in time

First, we need to discard the first few iterations at the beginning of each chain as a burn-in time. This is similar to the
equilibration time in a molecular dynamics simulation before the measurement. This action also ensures that the result
is independent of the initial positions of the walkers.

KLIFF provides a function to estimate the burn-in time, based on the Marginal Standard Error Rule (MSER). This can
calculation can be done using the function mser(). However, note that this calculation needs to be performed for each
temperature, walker, and parameter dimension separately.

Autocorrelation length

In the Markov chain, the position at step 𝑖 is not independent of the previous step. However, after several iterations
(denote this number by 𝜏 , which is the autocorrelation length), the walker will “forget” where it started, i.e., the position
at step 𝑖 is independent from step (𝑖 + 𝜏). Thus, we need to only keep every 𝜏 -th step to obtain the independent,
uncorrelated samples.

The estimation of the autocorrelation length in KLIFF is done via the function autocorr(), which wraps over emcee.
autocorr.integrated_time. This calculation needs to be done for each temperature independently. The required
input argument is a 𝐿× 𝑀̃ ×𝑁 array, where 𝐿 and 𝑁 are the number of walkers and parameters, respectively, and 𝑀̃
is the remaining number of iterations after discarding the burn-in time.

Convergence

Finally, after a sufficient number of iterations, the distribution of the MCMC samples will converge to the posterior.
For multi-chain MCMC simulation, the convergence can be assessed by calculating the multivariate potential scale
reduction factor, denoted by 𝑅̂𝑝. This quantity compares the variance between and within independent chains. The
value of 𝑅̂𝑝 declines to 1 as the number of iterations goes to infinity, with a common threshold is about 1.1.

In KLIFF, the function rhat() computes 𝑅̂𝑝 for one temperature. The required input argument is a 𝐿×𝑀̃*×𝑁 array
of independent samples (𝑀̃* is the number of independent samples in each walker). When the resulting 𝑅̂𝑝 values are
larger than the threshold (e.g., 1.1), then the MCMC simulation should be continued until this criterion is satisfied.

Note: Some sampling temperatures might converge at slower rates compared to others. So, user can terminate the
MCMC simulation as long as the samples at the target temperatures, e.g., 𝑇0, have converged.

See also:

See the tutorial for running MCMC in tut_mcmc.

4.6.2 Bootstrap

In general, the training dataset contains some random noise. When the data collection process is repeated, we will
not get the exact same values, but instead, we will get (slightly) different values, where the deviation comes from
the random noise. If we train the model to fit different realizations of the training dataset, we will get a distribution
of the parameters. The uncertainty of the parameters from this distribution gives how the error in the training data
is propagated to the uncertainty of the parameters. However, oftentimes we don’t have the luxury to repeat the data
collection. A suggestion, in this case, is to generate artificial datasets and train the model to fit these artificial datasets.

Bootstrapping is a way to generate artificial datasets. We assume that the original dataset contains 𝑁 independent
and identically distributed (iid) data points. An artificial, bootstrap dataset is generated by sample 𝑀 points from the
original dataset with replacement. Note that this means that there are some data points that are repeated, while some

42 Chapter 4. Frequently Used Modules

KLIFF Documentation, Release 0.4.3

other data points are not sampled, thus the bootstrap dataset is not the same as the original dataset. The difference
between the datasets gives a sense of probability in data.

Note: Although usually 𝑀 is set to be the same as 𝑁 , in principle it doesn’t need to be.

Implementation

Bootstrapping is implemented in Bootstrap. A general workflow for this calculation is

1. Instantiate Bootstrap class instance.

This process is straightforward. The only required argument is the Loss instance.

from kliff.uq import Bootstrap

loss = ... # define the loss function
Train the potential
min_kwargs = ... # Optimizer setting
loss.minimize(**min_kwargs)

bs = Bootstrap(loss, *args, **kwargs)

When instantiating the parent class Bootstrap, it will return either an instance of BootstrapEmpiricalModel
or BootstrapNeuralNetworkModel, depending on whether we have a physics-based (empirical) model or a
neural network model, respectively. When a neural network model is used, the user can specify an additional
argument orig_state_filename, which specified the name and path of the file to use to export the initial state of
the model prior to running bootstrap. This is to reset the state of the model at the end of performing bootstrap
UQ.

2. Generate bootstrap datasets.

In this implementation, we assume that the training dataset consists of many atomic configurations and the corre-
sponding quantities. Note that the quantities corresponding to a single atomic configuration are not independent
of each other. Thus, the resampling process to generate a bootstrap dataset should not be done at the data point
level. Instead, we should generate a bootstrap dataset by resampling the atomic configurations.

4.6. Uncertainty Quantification (UQ) 43

KLIFF Documentation, Release 0.4.3

The built-in bootstrap dataset generator function was set up to perform this type of resampling. Note that atomic
configurations here are referred to as compute arguments, which also contain the type of data and weights to use.

nsamples = ... # Number of samples to generate
bs.generate_bootstrap_compute_arguments(nsamples)

When an empirical model with multiple calculators is used, the resampling is done to the combined list of the
compute arguments across all calculators. Then, an internal function will automatically assign back the bootstrap
compute arguments to their respective calculators. This means that the number of compute arguments in each
calculator when we do bootstrapping is more likely to be different than the original number of compute arguments
per calculator, although the total number of compute arguments is still the same.

Also, note that the built-in bootstrap compute arguments generator assumes that the configurations are indepen-
dent of each other. In the case where this is not satisfied, then a more sophisticated resampling method should be
used. This can be done by defining a custom bootstrap compute arguments generator function. The only required
argument for this function is the requested number of samples.

3. Run the optimization for each bootstrap dataset.

After a set of bootstrap compute arguments is generated, then we need to iterate over each of them, and train the
potential to fit each bootstrap dataset.

bs.run(min_kwargs=min_kwargs)

There are 2 arguments that are the same to run the optimization stage of bootstrapping, regardless if we use an
empirical or neural network model. These arguments are:

• min_kwargs, which is a dictionary containing the keyword arguments that will be passed into the optimizer.
This argument can be thought of as the optimizer setting.

Note: Since the mapping from the bootstrap dataset to the inferred parameters contains optimization, then
it is recommended to use the same optimizer setting when we iterate over each bootstrap compute argument
and train the potential. Additionally, the optimizer setting should also be the same as the setting used in the
initial training, when we use the original set of compute arguments to train the potential.

• callback, which is an option to specify a function that will be called in each iteration. This can be used
as a debugging tool or to monitor convergence.

For other additional arguments, please refer to the respective function documentation, i.e., run() for an empirical
model or run() for neural network model.

44 Chapter 4. Frequently Used Modules

CHAPTER

FIVE

HOW TO

Some (incomplete) examples demonstrating how to use KLIFF.

5.1 Save and load a model

Once you’ve trained a model, you can save it disk and load it back later for the purpose of retraining, evaluation, etc.

5.1.1 Save a model

The save() method of a model can be used to save it. Suppose you’ve trained the Stillinger-Weber (SW) potential
discussed in tut_kim_sw, you can save the model by:

path = "./kliff_model.pkl"
model.save(path)

which creates a pickled file named kliff_model.pkl in the current working directory. All the information related to
the model are saved to the file, including the final values of the parameters, the constraints on the parameters (such as
the bounds on parameters set via set_one_opt_param() or set_opt_params()), and others.

5.1.2 Load a model

A model can be loaded using load() after the instantiation. For the same SW potential discussed in tut_kim_sw, it
can be loaded by:

model = KIMModel(model_name="Three_Body_Stillinger_Weber_Si__MO_405512056662_004")
path = "./kliff_model.pkl"
model.load(path)

If you want to retrain the loaded model, you can attach it to a calculator and then proceed as what discussed in
tut_kim_sw and tut_nn.

45

KLIFF Documentation, Release 0.4.3

5.2 Install a model

5.2.1 Install a KIM model

The kim-api-collections-management command line tool from the kim-api makes it easy to install a model
archived on the OpenKIM website. You can do:

$ kim-api-collections-management install user <model_name>

to automatically download a model from the OpenKIM website, and install it to the User Collection. Just replace
<model_name> with the Extended KIM ID of the model you want to install as listed on OpenKIM. To see that the
model has been successfully installed, do:

$ kim-api-collections-management list

See also:

A model can be installed into a different collection other than the User Collection specified by user. You can
use kim-api-collections-management to remove and reinstall models. See the kim-api documentation for more
information.

5.2.2 Install a KLIFF-trained model

As discussed in tut_kim_sw and tut_nn, you can write a trained model to a KIM model that is compatible with the
kim-api by:

path = "./kliff_trained_model"
model.write_kim_model(path)

Which writes to the current working directory a directory named kliff_trained_model.

Note: The path argument is optional, and KLIFF automatically generates a path if it is None.

To install the local kliff_trained_model, do:

$ kim-api-collections-management install user kliff_trained_model

which installs the model into the User Collection of the kim-api, and, of course, you can see the installed model by:

$ kim-api-collections-management list

The installed model can then be used with simulation codes like LAMMPS, ASE, and GULP via the kim-api.

46 Chapter 5. How To

https://openkim.org/kim-api/
https://openkim.org
https://openkim.org
https://openkim.org
https://openkim.org/kim-api/
https://openkim.org/kim-api/
https://openkim.org/kim-api/
https://lammps.sandia.gov
https://wiki.fysik.dtu.dk/ase/
http://gulp.curtin.edu.au/gulp/
https://openkim.org/kim-api/

KLIFF Documentation, Release 0.4.3

5.3 Implement a new model

5.4 Run in parallel mode

KLIFF supports parallelization over data. It can be run on shared-memory multicore desktop machines as well as HPCs
composed of multiple standalone machines connected by a network.

5.4.1 Physics-based models

We implement two parallelization schemes for physics-based models. The first is suitable to be used on a desktop
machine and the second is targed for HPCs.

multiprocessing

This scheme uses the multiprocessingmodule of Python and it can only be used on shared-memory desktop (laptop).
It’s straightforward to use: simply set nprocs to the number of processes you want to use when instantiate Loss. For
example,

calc = ... # create calculator
loss = Loss(calc, ..., nprocs=2)
loss.minimize(method="L-BFGS-B")

See also:

See tut_kim_sw for a full example.

MPI

The MPI scheme is targeted for HPCs (of course, it can be used on desktops) and we use the mpi4py Python wrapper
of MPI. mpi4py supports OpenMPI and MPICH. Once you have one of the two working, mpi4py can be installed by:

$ pip install mpi4py

See the mpi4py package documentation for more information on how to install it. Once it is successfully installed, we
can run KLIFF in parallel. For example, for the tutorial example tut_kim_sw, we can do:

$ mpiexec -np 2 python example_kim_SW_Si.py

Note: When using this MPI scheme, the nprocs argument passed to Loss is ignored.

Note: We only parallelize the evaluation of the loss during the minimization. As a result, the other parts will be
executed multiple times. For example, if kliff.models.Model.echo_model_params() is used, the information
of model parameters will be repeated multiple times. If this annoys you, you can let only of process (say the rank 0
process) to do it by doing something like:

5.3. Implement a new model 47

https://mpi4py.readthedocs.io
https://mpi4py.readthedocs.io
https://mpi4py.readthedocs.io
https://mpi4py.readthedocs.io

KLIFF Documentation, Release 0.4.3

from mpi4py import MPI

rank = MPI.COMM_WORLD.Get_rank()
if rank == 0:

model.echo_model_params()

5.4.2 Machine learning models

48 Chapter 5. How To

CHAPTER

SIX

COMMAND LINE TOOL

KLIFF has a command line tool called kliff that can be invoked directly from the terminal. The command line tool
kliff has the following sub-commands:

sub-command description
test Test installation
dataset Count, split, and other operations on dataset.

For all command line tools, you can do:

$ kliff --help
$ kliff sub-command --help

to get help (or -h for short).

49

KLIFF Documentation, Release 0.4.3

50 Chapter 6. Command Line Tool

CHAPTER

SEVEN

CONTRIBUTING GUIDE

We welcome all kinds of contributions to KLIFF – typo fix, bug reports, feature requests, and documentation improve-
ments. If you are interested in contributing to KLIFF, please read this guide. If you have any questions, please feel free
to open an issue or contact us.

7.1 Code style

KLIFF adopts the Google style for docstrings in Python code. Other docs like this file is written in MyST markdown,
which is an extension of the standard markdown. If you are familiar with the standard markdown, it should be easy to
write in MyST.

KLIFF uses isort, black a set of other tools to format and statically check the correctness of the code. These tools are
already configured using pre-commit. To use it,

7.1.1 Install pre-commit

pip install pre-commit

7.1.2 Install pre-commit hooks for KLIFF

cd kliff
pre-commit install

7.1.3 Run pre-commit checks

pre-commit run --all-files --show-diff-on-failure

This will run all the checks on all files. If there are warnings and errors reported, you can fix them and then commit
the changes.

Note: After pre-commit install the checks will be run automatically before each commit. You can do
pre-commit uninstall to disable the checks.

51

https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings
https://myst-parser.readthedocs.io/en/latest/syntax/typography.html
https://pycqa.github.io/isort/
https://black.readthedocs.io/en/stable/

KLIFF Documentation, Release 0.4.3

7.2 Testing

If you are contributing new codes, please add tests for them. All the tests are placed in the kliff/tests directory.
We use pytest for testing. After adding a new test, you can run it locally to make sure it passes.

First install the dependencies for testing:

cd kliff
pip install -e ".[tests]"
``

Then run the tests:

pytest

This will run all the tests. If you want to run a specific test, you can do

pytest path/to/your/awesome/test.py

7.3 Build the docs locally

You can generate the docs (including the tutorials) locally. First, install the dependencies for building the docs:

cd kliff
pip install -e ".[docs]"

Then you can build the docs:

cd docs
make html

The generated docs will be at kliff/docs/build/html/index.html, and you can open it in a browser.

7.4 Tutorials

If you have great tutorials, please write it in Jupyter notebook and place them in the kliff/docs/tutorials direc-
tory. Then update the kliff/docs/tutorials.rst file to include the new tutorials. After this, the tutorials will be
automatically built and included in the docs.

In your Jupyter notebook, you can use MyST markdown to write the text.

Warning: We are in the process of migrating some of the docs from RestructuredText to MyST markdown. So
you may see some of the docs are written in RestructuredText, and some links may be broken. We will fix them
soon.

52 Chapter 7. Contributing guide

https://docs.pytest.org/en/stable/

CHAPTER

EIGHT

CHANGE LOG

8.1 v0.4.3 (2023/12/17)

• Fix installing ptemcee

8.2 v0.4.2 (2023/12/16)

8.2.1 Enhancements

• Refactor test by @mjwen in https://github.com/openkim/kliff/pull/125

• Update the ptemcee dependency by @yonatank93 in https://github.com/openkim/kliff/pull/137

• Update GH actions to use latest conda-forge kim-api and test on macOS by @mjwen in
https://github.com/openkim/kliff/pull/143

8.2.2 Documentation

• Recreate docs building codes by @mjwen in https://github.com/openkim/kliff/pull/129

8.2.3 Other Changes

• Fix neighbor list bug by @mjwen in https://github.com/openkim/kliff/pull/90

• Fix _WrapperCalculator by @mjwen in https://github.com/openkim/kliff/pull/95

• Remove requirements.txt, add info in setup.py by @mjwen in https://github.com/openkim/kliff/pull/108

• Add multiple species support of LJ by @mjwen in https://github.com/openkim/kliff/pull/112

• Update CI to fix cmake version by @mjwen in https://github.com/openkim/kliff/pull/117

• WIP: Implement bootstrap by @yonatank93 in https://github.com/openkim/kliff/pull/107

53

KLIFF Documentation, Release 0.4.3

8.3 v0.4.1 (2022/10/06)

8.3.1 Added

• Uncertainty quantification via MCMC (@yonatank93). New tutorial and explanation of the functionality pro-
vided in the doc.

• Issue and PR template

8.3.2 Fixed

• Linear regression model parameter shape

• NN multispecies calculator to use parameters of all models

8.3.3 Updated

• Documentation on installing KLIFF and dependencies

8.4 v0.4.0 (2022/04/27)

8.4.1 Added

• Add ParameterTransform class to transform parameters into a different space (e.g. log space) @yonatank93

• Add Weight class to set weight for energy/forces/stress. This is not backward compatible, which changes the
signature of the residual function. Previously, in a residual function, the weights are passed in via the data
argument, but now, its passed in via an instance of the Weight class. @yonatank93

8.4.2 Fixed

• Fix checking cutoff entry @adityakavalur

• Fix energy_residual_fn and forces_residual_fn to weigh different component

8.4.3 Updated

• Change to use precommit GH action to check code format

8.5 v0.3.3 (2022/03/25)

8.5.1 Fixed

• Fix neighlist (even after v0.3.2, the problem can still happen). Now neighlist is the same as kimpy

54 Chapter 8. Change Log

KLIFF Documentation, Release 0.4.3

8.6 v0.3.2 (2022/03/01)

8.6.1 Added

• Enable params_relation_callback() for KIM model

8.6.2 Fixed

• Fix neighbor list segfault due to numerical error for 1D and 2D cases

8.7 v0.3.1 (2021/11/20)

• add gpu training for NN model; set the gpu parameter of a calculator (e.g. CalculatorTorch(model,
gpu=True)) to use it

• add pyproject.toml, requirements.txt, dependabot.yml to config repo

• switch to furo doc theme

• changed: compute grad of energy wrt desc in batch mode (NN calculator)

• fix: set fingerprints_filename and load descriptor state dict when reuse fingerprints (NN calculator)

8.8 v0.3.0 (2021/08/03)

• change license to LGPL

• set default optimizer

• put kimpy code in try except block

• add state_dict for descriptors and save it together with model

• change to use loguru for logging and allows user to set log level

8.9 v0.2.2 (2021/05/24)

• update to be compatible with kimpy v2.0.0

8.10 v0.2.1 (2021/05/24)

• update to be compatible with kimpy v2.0.0

• use entry entry_points to handle command line tool

• rename utils to devtool

8.6. v0.3.2 (2022/03/01) 55

KLIFF Documentation, Release 0.4.3

8.11 v0.2.0 (2021/01/19)

• add type hint for all codes

• reorganize model and parameters to make it more robust

• add more docstring for many undocumented class and functions

8.12 v0.1.7 (2020/12/20)

• add GitHub actions to automatically deploy to PyPI

• add a simple example to README

8.13 v0.1.5 (2020/2/13)

• add neighborlist utility, making NN model independent on kimpy

• add calculator to deal with multiple species for NN model

• update dropout layer to be compatible with the pytorch 1.3

8.14 v0.1.4 (2019/8/24)

• add support for the geodesic Levenberg-Marquardt minimization algorithm

• add command line tool model to inquire available parameters of KIM model

8.15 v0.1.3 (2019/8/19)

• add RMSE and Fisher information analyzers

• allow configuration weight for ML models

• add write optimizer state dictionary for ML models

• combine functions generate_training_fingerprints() and generate_test_fingerprints() of de-
scriptor to generate_fingerprints() (supporting passing mean and stdev file)

• rewrite symmetry descriptors to share with KIM driver

8.16 v0.1.2 (2019/6/27)

• MPI parallelization for physics-based models

• reorganize machine learning related files

• various bug fixes

• API changes * class DataSet renamed to Dataset * class Calculator moved to module calculators from
module calculator

56 Chapter 8. Change Log

KLIFF Documentation, Release 0.4.3

8.17 v0.1.1 (2019/5/13)

• KLIFF available from PyPI now. Using $pip install kliff to install.

• Use SW model from the KIM website in tutorial.

• Format code with black.

8.18 v0.1.0 (2019/3/29)

First official release, but API is not guaranteed to be stable.

• Add more docs to Package Reference.

8.19 v0.0.1 (2019/1/1)

Pre-release.

8.17. v0.1.1 (2019/5/13) 57

KLIFF Documentation, Release 0.4.3

58 Chapter 8. Change Log

CHAPTER

NINE

CHANGE LOG

9.1 v0.4.1 (2022/10/06)

9.1.1 Added

• Uncertainty quantification via MCMC (@yonatank93). New tutorial and explanation of the functionality pro-
vided in the doc.

• Issue and PR template

9.1.2 Fixed

• Linear regression model parameter shape

• NN multispecies calculator to use parameters of all models

9.1.3 Updated

• Documentation on installing KLIFF and dependencies

9.2 v0.4.0 (2022/04/27)

9.2.1 Added

• Add ParameterTransform class to transform parameters into a different space (e.g. log space) @yonatank93

• Add Weight class to set weight for energy/forces/stress. This is not backward compatible, which changes the
signature of the residual function. Previously, in a residual function, the weights are passed in via the data
argument, but now, its passed in via an instance of the Weight class. @yonatank93

59

KLIFF Documentation, Release 0.4.3

9.2.2 Fixed

• Fix checking cutoff entry @adityakavalur

• Fix energy_residual_fn and forces_residual_fn to weigh different component

9.2.3 Updated

• Change to use precommit GH action to check code format

9.3 v0.3.3 (2022/03/25)

9.3.1 Fixed

• Fix neighlist (even after v0.3.2, the problem can still happen). Now neighlist is the same as kimpy

9.4 v0.3.2 (2022/03/01)

9.4.1 Added

• Enable params_relation_callback() for KIM model

9.4.2 Fixed

• Fix neighbor list segfault due to numerical error for 1D and 2D cases

9.5 v0.3.1 (2021/11/20)

• add gpu training for NN model; set the gpu parameter of a calculator (e.g. CalculatorTorch(model,
gpu=True)) to use it

• add pyproject.toml, requirements.txt, dependabot.yml to config repo

• switch to furo doc theme

• changed: compute grad of energy wrt desc in batch mode (NN calculator)

• fix: set fingerprints_filename and load descriptor state dict when reuse fingerprints (NN calculator)

60 Chapter 9. Change Log

KLIFF Documentation, Release 0.4.3

9.6 v0.3.0 (2021/08/03)

• change license to LGPL

• set default optimizer

• put kimpy code in try except block

• add state_dict for descriptors and save it together with model

• change to use loguru for logging and allows user to set log level

9.7 v0.2.2 (2021/05/24)

• update to be compatible with kimpy v2.0.0

9.8 v0.2.1 (2021/05/24)

• update to be compatible with kimpy v2.0.0

• use entry entry_points to handle command line tool

• rename utils to devtool

9.9 v0.2.0 (2021/01/19)

• add type hint for all codes

• reorganize model and parameters to make it more robust

• add more docstring for many undocumented class and functions

9.10 v0.1.7 (2020/12/20)

• add GitHub actions to automatically deploy to PyPI

• add a simple example to README

9.11 v0.1.5 (2020/2/13)

• add neighborlist utility, making NN model independent on kimpy

• add calculator to deal with multiple species for NN model

• update dropout layer to be compatible with the pytorch 1.3

9.6. v0.3.0 (2021/08/03) 61

KLIFF Documentation, Release 0.4.3

9.12 v0.1.4 (2019/8/24)

• add support for the geodesic Levenberg-Marquardt minimization algorithm

• add command line tool model to inquire available parameters of KIM model

9.13 v0.1.3 (2019/8/19)

• add RMSE and Fisher information analyzers

• allow configuration weight for ML models

• add write optimizer state dictionary for ML models

• combine functions generate_training_fingerprints() and generate_test_fingerprints() of de-
scriptor to generate_fingerprints() (supporting passing mean and stdev file)

• rewrite symmetry descriptors to share with KIM driver

9.14 v0.1.2 (2019/6/27)

• MPI parallelization for physics-based models

• reorganize machine learning related files

• various bug fixes

• API changes * class DataSet renamed to Dataset * class Calculator moved to module calculators from
module calculator

9.15 v0.1.1 (2019/5/13)

• KLIFF available from PyPI now. Using $pip install kliff to install.

• Use SW model from the KIM website in tutorial.

• Format code with black.

9.16 v0.1.0 (2019/3/29)

First official release, but API is not guaranteed to be stable.

• Add more docs to Package Reference.

62 Chapter 9. Change Log

KLIFF Documentation, Release 0.4.3

9.17 v0.0.1 (2019/1/1)

Pre-release.

9.17. v0.0.1 (2019/1/1) 63

KLIFF Documentation, Release 0.4.3

64 Chapter 9. Change Log

CHAPTER

TEN

CHANGE LOG

10.1 Enhancements

• Refactor test by @mjwen in https://github.com/openkim/kliff/pull/125

• Update the ptemcee dependency by @yonatank93 in https://github.com/openkim/kliff/pull/137

• Update GH actions to use latest conda-forge kim-api and test on macOS by @mjwen in
https://github.com/openkim/kliff/pull/143

10.2 Documentation

• Recreate docs building codes by @mjwen in https://github.com/openkim/kliff/pull/129

10.3 Other Changes

• Fix neighbor list bug by @mjwen in https://github.com/openkim/kliff/pull/90

• Fix _WrapperCalculator by @mjwen in https://github.com/openkim/kliff/pull/95

• Remove requirements.txt, add info in setup.py by @mjwen in https://github.com/openkim/kliff/pull/108

• Add multiple species support of LJ by @mjwen in https://github.com/openkim/kliff/pull/112

• Update CI to fix cmake version by @mjwen in https://github.com/openkim/kliff/pull/117

• WIP: Implement bootstrap by @yonatank93 in https://github.com/openkim/kliff/pull/107

10.4 v0.4.1 (2022/10/06)

10.4.1 Added

• Uncertainty quantification via MCMC (@yonatank93). New tutorial and explanation of the functionality pro-
vided in the doc.

• Issue and PR template

65

KLIFF Documentation, Release 0.4.3

10.4.2 Fixed

• Linear regression model parameter shape

• NN multispecies calculator to use parameters of all models

10.4.3 Updated

• Documentation on installing KLIFF and dependencies

10.5 v0.4.0 (2022/04/27)

10.5.1 Added

• Add ParameterTransform class to transform parameters into a different space (e.g. log space) @yonatank93

• Add Weight class to set weight for energy/forces/stress. This is not backward compatible, which changes the
signature of the residual function. Previously, in a residual function, the weights are passed in via the data
argument, but now, its passed in via an instance of the Weight class. @yonatank93

10.5.2 Fixed

• Fix checking cutoff entry @adityakavalur

• Fix energy_residual_fn and forces_residual_fn to weigh different component

10.5.3 Updated

• Change to use precommit GH action to check code format

10.6 v0.3.3 (2022/03/25)

10.6.1 Fixed

• Fix neighlist (even after v0.3.2, the problem can still happen). Now neighlist is the same as kimpy

10.7 v0.3.2 (2022/03/01)

10.7.1 Added

• Enable params_relation_callback() for KIM model

66 Chapter 10. Change Log

KLIFF Documentation, Release 0.4.3

10.7.2 Fixed

• Fix neighbor list segfault due to numerical error for 1D and 2D cases

10.8 v0.3.1 (2021/11/20)

• add gpu training for NN model; set the gpu parameter of a calculator (e.g. CalculatorTorch(model,
gpu=True)) to use it

• add pyproject.toml, requirements.txt, dependabot.yml to config repo

• switch to furo doc theme

• changed: compute grad of energy wrt desc in batch mode (NN calculator)

• fix: set fingerprints_filename and load descriptor state dict when reuse fingerprints (NN calculator)

10.9 v0.3.0 (2021/08/03)

• change license to LGPL

• set default optimizer

• put kimpy code in try except block

• add state_dict for descriptors and save it together with model

• change to use loguru for logging and allows user to set log level

10.10 v0.2.2 (2021/05/24)

• update to be compatible with kimpy v2.0.0

10.11 v0.2.1 (2021/05/24)

• update to be compatible with kimpy v2.0.0

• use entry entry_points to handle command line tool

• rename utils to devtool

10.12 v0.2.0 (2021/01/19)

• add type hint for all codes

• reorganize model and parameters to make it more robust

• add more docstring for many undocumented class and functions

10.8. v0.3.1 (2021/11/20) 67

KLIFF Documentation, Release 0.4.3

10.13 v0.1.7 (2020/12/20)

• add GitHub actions to automatically deploy to PyPI

• add a simple example to README

10.14 v0.1.5 (2020/2/13)

• add neighborlist utility, making NN model independent on kimpy

• add calculator to deal with multiple species for NN model

• update dropout layer to be compatible with the pytorch 1.3

10.15 v0.1.4 (2019/8/24)

• add support for the geodesic Levenberg-Marquardt minimization algorithm

• add command line tool model to inquire available parameters of KIM model

10.16 v0.1.3 (2019/8/19)

• add RMSE and Fisher information analyzers

• allow configuration weight for ML models

• add write optimizer state dictionary for ML models

• combine functions generate_training_fingerprints() and generate_test_fingerprints() of de-
scriptor to generate_fingerprints() (supporting passing mean and stdev file)

• rewrite symmetry descriptors to share with KIM driver

10.17 v0.1.2 (2019/6/27)

• MPI parallelization for physics-based models

• reorganize machine learning related files

• various bug fixes

• API changes * class DataSet renamed to Dataset * class Calculator moved to module calculators from
module calculator

68 Chapter 10. Change Log

KLIFF Documentation, Release 0.4.3

10.18 v0.1.1 (2019/5/13)

• KLIFF available from PyPI now. Using $pip install kliff to install.

• Use SW model from the KIM website in tutorial.

• Format code with black.

10.19 v0.1.0 (2019/3/29)

First official release, but API is not guaranteed to be stable.

• Add more docs to Package Reference.

10.20 v0.0.1 (2019/1/1)

Pre-release.

10.18. v0.1.1 (2019/5/13) 69

KLIFF Documentation, Release 0.4.3

70 Chapter 10. Change Log

CHAPTER

ELEVEN

CHANGE LOG

11.1 v0.4.1 (2022/10/06)

11.1.1 Added

• Uncertainty quantification via MCMC (@yonatank93). New tutorial and explanation of the functionality pro-
vided in the doc.

• Issue and PR template

11.1.2 Fixed

• Linear regression model parameter shape

• NN multispecies calculator to use parameters of all models

11.1.3 Updated

• Documentation on installing KLIFF and dependencies

11.2 v0.4.0 (2022/04/27)

11.2.1 Added

• Add ParameterTransform class to transform parameters into a different space (e.g. log space) @yonatank93

• Add Weight class to set weight for energy/forces/stress. This is not backward compatible, which changes the
signature of the residual function. Previously, in a residual function, the weights are passed in via the data
argument, but now, its passed in via an instance of the Weight class. @yonatank93

71

KLIFF Documentation, Release 0.4.3

11.2.2 Fixed

• Fix checking cutoff entry @adityakavalur

• Fix energy_residual_fn and forces_residual_fn to weigh different component

11.2.3 Updated

• Change to use precommit GH action to check code format

11.3 v0.3.3 (2022/03/25)

11.3.1 Fixed

• Fix neighlist (even after v0.3.2, the problem can still happen). Now neighlist is the same as kimpy

11.4 v0.3.2 (2022/03/01)

11.4.1 Added

• Enable params_relation_callback() for KIM model

11.4.2 Fixed

• Fix neighbor list segfault due to numerical error for 1D and 2D cases

11.5 v0.3.1 (2021/11/20)

• add gpu training for NN model; set the gpu parameter of a calculator (e.g. CalculatorTorch(model,
gpu=True)) to use it

• add pyproject.toml, requirements.txt, dependabot.yml to config repo

• switch to furo doc theme

• changed: compute grad of energy wrt desc in batch mode (NN calculator)

• fix: set fingerprints_filename and load descriptor state dict when reuse fingerprints (NN calculator)

72 Chapter 11. Change Log

KLIFF Documentation, Release 0.4.3

11.6 v0.3.0 (2021/08/03)

• change license to LGPL

• set default optimizer

• put kimpy code in try except block

• add state_dict for descriptors and save it together with model

• change to use loguru for logging and allows user to set log level

11.7 v0.2.2 (2021/05/24)

• update to be compatible with kimpy v2.0.0

11.8 v0.2.1 (2021/05/24)

• update to be compatible with kimpy v2.0.0

• use entry entry_points to handle command line tool

• rename utils to devtool

11.9 v0.2.0 (2021/01/19)

• add type hint for all codes

• reorganize model and parameters to make it more robust

• add more docstring for many undocumented class and functions

11.10 v0.1.7 (2020/12/20)

• add GitHub actions to automatically deploy to PyPI

• add a simple example to README

11.11 v0.1.5 (2020/2/13)

• add neighborlist utility, making NN model independent on kimpy

• add calculator to deal with multiple species for NN model

• update dropout layer to be compatible with the pytorch 1.3

11.6. v0.3.0 (2021/08/03) 73

KLIFF Documentation, Release 0.4.3

11.12 v0.1.4 (2019/8/24)

• add support for the geodesic Levenberg-Marquardt minimization algorithm

• add command line tool model to inquire available parameters of KIM model

11.13 v0.1.3 (2019/8/19)

• add RMSE and Fisher information analyzers

• allow configuration weight for ML models

• add write optimizer state dictionary for ML models

• combine functions generate_training_fingerprints() and generate_test_fingerprints() of de-
scriptor to generate_fingerprints() (supporting passing mean and stdev file)

• rewrite symmetry descriptors to share with KIM driver

11.14 v0.1.2 (2019/6/27)

• MPI parallelization for physics-based models

• reorganize machine learning related files

• various bug fixes

• API changes * class DataSet renamed to Dataset * class Calculator moved to module calculators from
module calculator

11.15 v0.1.1 (2019/5/13)

• KLIFF available from PyPI now. Using $pip install kliff to install.

• Use SW model from the KIM website in tutorial.

• Format code with black.

11.16 v0.1.0 (2019/3/29)

First official release, but API is not guaranteed to be stable.

• Add more docs to Package Reference.

74 Chapter 11. Change Log

KLIFF Documentation, Release 0.4.3

11.17 v0.0.1 (2019/1/1)

Pre-release.

11.17. v0.0.1 (2019/1/1) 75

KLIFF Documentation, Release 0.4.3

76 Chapter 11. Change Log

CHAPTER

TWELVE

FREQUENTLY ASKED QUESTIONS

12.1 I am using a KIM model, but it fails. What should I do?

• Check you have the model installed. You can use $ kim-api-collections-management list to see what
KIM models are installed.

• Check kim.log to see what the error is. Note that kim.log stores all the log info chronologically, so you may
want to delete it and run you fitting code to get a fresh one.

• Make sure that parameters like cutoff, rhocutoff is not used as fitting parameters. See What does “error * *
Simulator supplied GetNeighborList() routine returned error” in kim.log mean? for more.

12.2 What does “error * * Simulator supplied GetNeighborList() rou-
tine returned error” in kim.log mean?

Probably you use parameters related to cutoff distance (e.g. cutoff and rhocutoff) as fitting parameters. KLIFF
build neighbor list only once at the beginning, and reuse it during the optimization process. If the cutoff changes,
the neighbor list could be invalid any more. Typically, in the training of potentials, we treat cutoffs as predefined
hyperparameters and do not optimize them. So simply remove them from your fitting parameters.

12.3 I am using mpirun (mpiexec), but why the output shows it is Run-
ning in multiprocessing mode with x processes?

If you are running something like mpiexec -np 2 python example_kim_SW_Si.py and see each minimization
step executed twice, you may forget to install mpi4py. See Run in parallel mode for more one how to run in parallel.

77

KLIFF Documentation, Release 0.4.3

78 Chapter 12. Frequently Asked Questions

CHAPTER

THIRTEEN

PACKAGE REFERENCE

13.1 kliff.analyzers

13.2 kliff.atomic_data

13.3 kliff.calculators

13.4 kliff.dataset

13.5 kliff.descriptors

13.6 kliff.error

13.7 kliff.log

13.8 kliff.loss

13.9 kliff.models

13.10 kliff.neighbor

13.11 kliff.nn

13.12 kliff.parallel

13.13 kliff.uq

13.14 kliff.utils

If you find KLIFF useful in your research, please cite:

79

KLIFF Documentation, Release 0.4.3

@Article{wen2022kliff,
title = {{KLIFF}: A framework to develop physics-based and machine learning␣

→˓interatomic potentials},
author = {Mingjian Wen and Yaser Afshar and Ryan S. Elliott and Ellad B. Tadmor},
journal = {Computer Physics Communications},
volume = {272},
pages = {108218},
year = {2022},
doi = {10.1016/j.cpc.2021.108218},

}

80 Chapter 13. Package Reference

CHAPTER

FOURTEEN

INDICES AND TABLES

• genindex

• modindex

• search

81

KLIFF Documentation, Release 0.4.3

82 Chapter 14. Indices and tables

BIBLIOGRAPHY

[lenosky1997] Lenosky, T.J., Kress, J.D., Kwon, I., Voter, A.F., Edwards, B., Richards, D.F., Yang, S., Adams, J.B.,
1997. Highly optimized tight-binding model of silicon. Phys. Rev. B 55, 15281544. https://doi.org/10.1103/
PhysRevB.55.1528

[wen2016potfit] Wen, M., Li, J., Brommer, P., Elliott, R.S., Sethna, J.P. and Tadmor, E.B., 2016. A KIM-compliant
potfit for fitting sloppy interatomic potentials: application to the EDIP model for silicon. Modelling and
Simulation in Materials Science and Engineering, 25(1), p.014001.

[transtrum2012geodesicLM] Transtrum, M.K., Sethna, J.P., 2012. Improvements to the Levenberg-Marquardt algo-
rithm for nonlinear least-squares minimization. arXiv:1201.5885 [physics].

[Kurniawan2022] Kurniawan, Y., Petrie, C.L., Williams Jr., K.J., Transtrum, M.K., Tadmor, E.B., Elliott, R.S., Karls,
D.S., Wen, M., 2022. Bayesian, frequentist, and information geometric approaches to parametric uncer-
tainty quantification of classical empirical interatomic potentials. J. Chem. Phys. https://doi.org/10.1063/5.
0084988

[Frederiksen2004] S. L. Frederiksen, K. W. Jacobsen, K. S. Brown, and J. P. Sethna, “Bayesian Ensemble Approach
to Error Estimation of Interatomic Potentials,” Phys. Rev. Lett., vol. 93, no. 16, p. 165501, Oct. 2004, doi:
10.1103/PhysRevLett.93.165501.

[KurniawanKLIFFUQ] Kurniawan, Y., Petrie, C.L., Transtrum, M.K., Tadmor, E.B., Elliott, R.S., Karls, D.S., Wen,
M., 2022. Extending OpenKIM with an Uncertainty Quantification Toolkit for Molecular Modeling, in: 2022
IEEE 18th International Conference on E-Science (e-Science). Presented at the 2022 IEEE 18th International
Conference on e-Science (e-Science), pp. 367–377. https://doi.org/10.1109/eScience55777.2022.00050

83

https://doi.org/10.1103/PhysRevB.55.1528
https://doi.org/10.1103/PhysRevB.55.1528
https://doi.org/10.1063/5.0084988
https://doi.org/10.1063/5.0084988
https://doi.org/10.1109/eScience55777.2022.00050

	Installation
	Installing KLIFF
	Other dependencies
	KIM API and kimpy
	PyTorch
	KIM Models

	Tutorials
	Train a Stillinger-Weber potential
	Model
	Training set
	Calculator
	Loss function

	Train a neural network potential
	Model
	Training set and calculator
	Loss function

	Train a neural network potential for SiC
	Parameter transformation for the Stillinger-Weber potential
	MCMC sampling
	Train a Lennard-Jones potential
	Train a linear regression potential

	Theory
	Frequently Used Modules
	Dataset
	Inspect dataset
	Dataset Format
	Extended XYZ

	Weight
	Default weight class
	Magnitude-inverse weight
	Define your weight class

	Models
	KIM models
	Neural network models

	Descriptors
	Symmetry functions
	Bispectrum

	Calculators
	Loss
	Built-in residual function
	Use your own residual function

	Uncertainty Quantification (UQ)
	MCMC
	Implementation
	Parallelization

	MCMC analysis
	Burn-in time
	Autocorrelation length
	Convergence

	Bootstrap
	Implementation

	How To
	Save and load a model
	Save a model
	Load a model

	Install a model
	Install a KIM model
	Install a KLIFF-trained model

	Implement a new model
	Run in parallel mode
	Physics-based models
	multiprocessing
	MPI

	Machine learning models

	Command Line Tool
	Contributing guide
	Code style
	Install pre-commit
	Install pre-commit hooks for KLIFF
	Run pre-commit checks

	Testing
	Build the docs locally
	Tutorials

	Change Log
	v0.4.3 (2023/12/17)
	v0.4.2 (2023/12/16)
	Enhancements 🛠
	Documentation 📖
	Other Changes

	v0.4.1 (2022/10/06)
	Added
	Fixed
	Updated

	v0.4.0 (2022/04/27)
	Added
	Fixed
	Updated

	v0.3.3 (2022/03/25)
	Fixed

	v0.3.2 (2022/03/01)
	Added
	Fixed

	v0.3.1 (2021/11/20)
	v0.3.0 (2021/08/03)
	v0.2.2 (2021/05/24)
	v0.2.1 (2021/05/24)
	v0.2.0 (2021/01/19)
	v0.1.7 (2020/12/20)
	v0.1.5 (2020/2/13)
	v0.1.4 (2019/8/24)
	v0.1.3 (2019/8/19)
	v0.1.2 (2019/6/27)
	v0.1.1 (2019/5/13)
	v0.1.0 (2019/3/29)
	v0.0.1 (2019/1/1)

	Change Log
	v0.4.1 (2022/10/06)
	Added
	Fixed
	Updated

	v0.4.0 (2022/04/27)
	Added
	Fixed
	Updated

	v0.3.3 (2022/03/25)
	Fixed

	v0.3.2 (2022/03/01)
	Added
	Fixed

	v0.3.1 (2021/11/20)
	v0.3.0 (2021/08/03)
	v0.2.2 (2021/05/24)
	v0.2.1 (2021/05/24)
	v0.2.0 (2021/01/19)
	v0.1.7 (2020/12/20)
	v0.1.5 (2020/2/13)
	v0.1.4 (2019/8/24)
	v0.1.3 (2019/8/19)
	v0.1.2 (2019/6/27)
	v0.1.1 (2019/5/13)
	v0.1.0 (2019/3/29)
	v0.0.1 (2019/1/1)

	Change Log
	Enhancements 🛠
	Documentation 📖
	Other Changes
	v0.4.1 (2022/10/06)
	Added
	Fixed
	Updated

	v0.4.0 (2022/04/27)
	Added
	Fixed
	Updated

	v0.3.3 (2022/03/25)
	Fixed

	v0.3.2 (2022/03/01)
	Added
	Fixed

	v0.3.1 (2021/11/20)
	v0.3.0 (2021/08/03)
	v0.2.2 (2021/05/24)
	v0.2.1 (2021/05/24)
	v0.2.0 (2021/01/19)
	v0.1.7 (2020/12/20)
	v0.1.5 (2020/2/13)
	v0.1.4 (2019/8/24)
	v0.1.3 (2019/8/19)
	v0.1.2 (2019/6/27)
	v0.1.1 (2019/5/13)
	v0.1.0 (2019/3/29)
	v0.0.1 (2019/1/1)

	Change Log
	v0.4.1 (2022/10/06)
	Added
	Fixed
	Updated

	v0.4.0 (2022/04/27)
	Added
	Fixed
	Updated

	v0.3.3 (2022/03/25)
	Fixed

	v0.3.2 (2022/03/01)
	Added
	Fixed

	v0.3.1 (2021/11/20)
	v0.3.0 (2021/08/03)
	v0.2.2 (2021/05/24)
	v0.2.1 (2021/05/24)
	v0.2.0 (2021/01/19)
	v0.1.7 (2020/12/20)
	v0.1.5 (2020/2/13)
	v0.1.4 (2019/8/24)
	v0.1.3 (2019/8/19)
	v0.1.2 (2019/6/27)
	v0.1.1 (2019/5/13)
	v0.1.0 (2019/3/29)
	v0.0.1 (2019/1/1)

	Frequently Asked Questions
	I am using a KIM model, but it fails. What should I do?
	What does “error * * Simulator supplied GetNeighborList() routine returned error” in kim.log mean?
	I am using mpirun (mpiexec), but why the output shows it is Running in multiprocessing mode with x processes?

	Package Reference
	kliff.analyzers
	kliff.atomic_data
	kliff.calculators
	kliff.dataset
	kliff.descriptors
	kliff.error
	kliff.log
	kliff.loss
	kliff.models
	kliff.neighbor
	kliff.nn
	kliff.parallel
	kliff.uq
	kliff.utils

	Indices and tables
	Bibliography

