KLIFF Documentation
Release 0.4.3

Mingjian Wen

Dec 25, 2023

CONTENTS

1 Installation 3
2 Tutorials S
3 Theory 27
4 Frequently Used Modules 29
5 How To 45
6 Command Line Tool 49
7 Contributing guide 51
8 Change Log 53
9 Change Log 59
10 Change Log 65
11 Change Log 71
12 Frequently Asked Questions 77
13 Package Reference 79
14 Indices and tables 81

Bibliography 83

KLIFF Documentation, Release 0.4.3

KLIFF is an interatomic potential fitting package that can be used to fit both physics-motivated potentials (e.g. the
Stillinger-Weber potential) and machine learning potentials (e.g. neural network potential). The trained potential can
be deployed with the KIM-API, which is supported by major simulation codes such as LAMMPS, ASE, DL._POLY,
and GULP among others.

CONTENTS 1

https://openkim.org/kim-api/
https://lammps.sandia.gov/
https://wiki.fysik.dtu.dk/ase/
https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx/
http://gulp.curtin.edu.au/gulp/

KLIFF Documentation, Release 0.4.3

2 CONTENTS

CHAPTER
ONE

INSTALLATION

KLIFF can be installed via package managers (conda or pip) or from source.

1.1 Installing KLIFF

This recommended way to install KLIFF is via conda. You can install it by:

$ conda create --name kliff env
$ conda activate kliff_env
$ conda install -c conda-forge kliff

Alternatively, you can install using pip:

[$ pip install kliff

or from source:

$ git clone https://github.com/openkim/kliff
$ pip install ./kliff

1.2 Other dependencies

1.2.1 KIM API and kimpy

KLIFF requires kim-api and kimpy to be installed. If you install KLIFF via conda as described above, these two pack-
ages are installed automatically, and you are good to go. Otherwise, you will need to install kim-api and kimpy before
installing KLIFF. Of course, you can first install them using conda $ conda install -c conda-forge kim-api
kimpy and then install KLIFF using pip or from source. Alternatively, you can install them from source as well, and
see their documentation for more information.

https://openkim.org/kim-api
https://github.com/openkim/kimpy
https://openkim.org/kim-api
https://github.com/openkim/kimpy

KLIFF Documentation, Release 0.4.3

1.2.2 PyTorch

For machine learning potentials, KLIFF takes advantage of PyTorch to build neural network models and conduct the
training. So if you want to train neural network potentials, PyTorch needs to be installed. Please follow the instructions
given on the official PyTorch website to install it.

1.2.3 KIM Models

If you are interested in training physics-based models that are avaialbe from OpenKIM, you will need to install the
KIM models that you want to use. After kim-api is installed, you can do $ kim-api-collections-management
list to see the list of installed KIM models. You can also install the models you want by $
kim-api-collections-management install <model-name>. See the kim-api documentation for more infor-
mation.

If you see a list of directories where the KIM model drivers and models are placed, then you are good to go. Otherwise,
you may forget to set up the PATH and bash completions, which can be achieved by (assuming you are using Bash):
$ source path/to/the/kim/library/bin/kim-api-activate. See the kim-api documentation for more infor-
mation.

4 Chapter 1. Installation

https://pytorch.org
https://pytorch.org
https://pytorch.org
https://openkim.org
https://openkim.org/kim-api
https://openkim.org/kim-api
https://openkim.org/kim-api

CHAPTER
TWO

TUTORIALS

Note: We are transition the tutorials from sphinx-gallery to jupyter notebooks. Some links might be broken and we
are working on fixing them.

2.1 Train a Stillinger-Weber potential

In this tutorial, we train a Stillinger-Weber (SW) potential for silicon that is archived on OpenKIM_.
Before getting started to train the SW model, let’s first make sure it is installed.
If you haven’t already, follow installation to install kim-api and kimpy, and openkim-models.

Thendo $§ kim-api-collections-management list,and make sure SW_StillingerWeber_1985_Si__MO_405512056662_006
is listed in one of the collections.

We are going to create potentials for diamond silicon, and fit the potentials to a training set of energies and forces consist-
ing of compressed and stretched diamond silicon structures, as well as configurations drawn from molecular dynamics
trajectories at different temperatures. Download the training set :download:Si_training_set.tar.gz <https:/
/raw.githubusercontent.com/openkim/kliff/master/examples/Si_training_set.tar.gz>. (It will be
automatically downloaded if not present.) The data is stored in # extended xyz format, and see doc.dataset for more
information of this format.

Let’s first import the modules that will be used in this example.

from kliff.calculators import Calculator
from kliff.dataset import Dataset

from kliff.dataset.weight import Weight
from kliff.loss import Loss

from kliff.models import KIMModel

from kliff.utils import download_dataset

ModuleNotFoundError Traceback (most recent call last)
Cell In[1], line 1
----> 1 from kliff.calculators import Calculator

2 from kliff.dataset import Dataset

3 from kliff.dataset.weight import Weight

ModuleNotFoundError: No module named 'kliff'

KLIFF Documentation, Release 0.4.3

2.1.1 Model

We first create a KIM model for the SW potential, and print out all the available parameters that can be optimized (we
call this model parameters).

model = KIMModel (model_name="SW_StillingerWeber_1985_Si__MO0_405512056662_006")
model . echo_model_params ()

i
*

Available parameters to optimize.
Parameters in “original’ space.
Model: SW_StillingerWeber_1985_Si__MO_405512056662_006

#

name: A

value: [15.28484792]
size: 1

name: B

value: [0.60222456]
size: 1

name: p

value: [4.]

size: 1

name: ¢

value: [0.]

size: 1

name: sigma
value: [2.0951]
size: 1

name: gamma
value: [2.51412]
size: 1

name: cutoff
value: [3.77118]
size: 1

name: lambda
value: [45.5322]
size: 1

name: costheta®
value: [-0.33333333]
size: 1

'# \n#.,
—Available parameters to optimize.\n# Parameters in ‘original’ space.\n# Model: SW_
—StillingerWeber_1985_Si__M0_405512056662_006\n

(continues on next page)

6 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

(continued from previous page)
\n\
—nname: A\nvalue: [15.28484792]\nsize: 1\n\nname: B\nvalue: [0.60222456]\nsize: 1\n\
—nname: p\nvalue: [4.]\nsize: 1\n\nname: g\nvalue: [0.]\nsize: 1\n\nname: sigma\nvalue:.
—[2.0951]\nsize: 1\n\nname: gamma\nvalue: [2.51412]\nsize: 1\n\nname: cutoff\nvalue: [3.
—»77118]\nsize: 1\n\nname: lambda\nvalue: [45.5322]\nsize: 1\n\nname: costheta®\nvalue:..
-+ [-0.33333333]\nsize: 1\n\n'

The output is generated by the last line, and it tells us the name, value, size, data type and a description of each
parameter.

Now that we know what parameters are available for fitting, we can optimize all or a subset of them to reproduce the
training set.

model .set_opt_params(
A=[[5.0, 1.0, 20]], B=[["default"]], sigma=[[2.0951, "fix"]], gamma=[[1.5]]
)

model . echo_opt_params()

Model parameters that are optimized.
Note that the parameters are in the transformed space if
‘params_transform® is provided when instantiating the model.

H B H K W

=

1
5.0000000000000000e+00 1.0000000000000000e+00 2.0000000000000000e+01

B1
6.0222455840000000e-01

sigma 1
2.0951000000000000e+00 fix

gamma 1
1.5000000000000000e+00

'# \n#._
—.Model parameters that are optimized.\n# Note that the parameters are in the,
—transformed space if \n# “params_transform’™ is provided when instantiating the model.\n
. \n\nA._
—~I1\n 5.0000000000000000ec+00 1.0000000000000000e+00 2.0000000000000000e+01 \n\nB 1\
—~n 6.0222455840000000e-01 \n\nsigma 1\n 2.0951000000000000e+00 fix \n\ngamma 1\n 1.
—.5000000000000000e+00 \n\n'

Here, we tell KLIFF to fit four parameters B, gamma, sigma, and A of the SW model. The information for each fitting
parameter should be provided as a list of list, where the size of the outer list should be equal to the size of the parameter
given by model.echo_model_params (). For each inner list, you can provide either one, two, or three items.

* One item. You can use a numerical value (e.g. gamma) to provide an initial guess of the parameter. Alternatively,
the string 'default’' can be provided to use the default value in the model (e.g. B).

* Two items. The first item should be a numerical value and the second item should be the string 'fix' (e.g.
sigma), which tells KLIFF to use the value for the parameter, but do not optimize it.

2.1. Train a Stillinger-Weber potential 7

KLIFF Documentation, Release 0.4.3

e Three items. The first item can be a numerical value or the string 'default’, having the same meanings as
the one item case. In the second and third items, you can list the lower and upper bounds for the parameters,
respectively. A bound could be provided as a numerical values or None. The latter indicates no bound is applied.

The call of model.echo_opt_params() prints out the fitting parameters that we require KLIFF to optimize. The
number 1 after the name of each parameter indicates the size of the parameter.

2.1.2 Training set

KLIFF has a :class:~kliff.dataset.Dataset to deal with the training data (and possibly test data). Additionally, we
define the energy_weight and forces_weight corresponding to each configuration using :class:~kliff.dataset.
weight.Weight. In this example, we set energy_weight to 1.0 and forces_weight to 8. 1. For the silicon training
set, we can read and process the files by:

dataset_path = download_dataset(dataset_name="Si_training_set")
weight = Weight(energy_weight=1.0, forces_weight=0.1)

tset = Dataset(dataset_path, weight)

configs = tset.get_configs()

2023-08-01 22:27:08.799 | INFO | kliff.dataset.dataset:_read:398 - 1000.
—.configurations read from /Users/mjwen.admin/Packages/kliff/docs/source/tutorials/Si_
—training_set

The configs in the last line is a list of :class:~kliff.dataset.Configuration. Each configuration is an internal
representation of a processed extended xyz file, hosting the species, coordinates, energy, forces, and other related
information of a system of atoms.

2.1.3 Calculator

:class:~kliff.calculator.Calculator is the central agent that exchanges information and orchestrate the operation
of the fitting process. It calls the model to compute the energy and forces and provide this information to the Loss
function_ (discussed below) to compute the loss. It also grabs the parameters from the optimizer and update the
parameters stored in the model so that the up-to-date parameters are used the next time the model is evaluated to
compute the energy and forces. The calculator can be created by:

calc = Calculator(model)
_ = calc.create(configs)

2023-08-01 22:27:09.207 | INFO | kliff.calculators.calculator:create:107 - Create.
—calculator for 1000 configurations.

where calc.create(configs) does some initializations for each configuration in the training set, such as creating
the neighbor list.

8 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

2.1.4 Loss function

KLIFF uses a loss function to quantify the difference between the training set data and potential predictions and uses
minimization algorithms to reduce the loss as much as possible. KLIFF provides a large number of minimization
algorithms by interacting with SciPy_. For physics-motivated potentials, any algorithm listed on scipy.optimize.
minimize_ and scipy.optimize.least_squares_ can be used. In the following code snippet, we create a loss
of energy and forces and use 2 processors to calculate the loss. The L-BFGS-B minimization algorithm is applied to
minimize the loss, and the minimization is allowed to run for a max number of 100 iterations.

steps = 100
loss = Loss(calc, nprocs=2)
loss.minimize (method="L-BFGS-B", options={"disp": True, "maxiter": steps})

2023-08-01 22:27:09.210 | INFO | kliff.loss:minimize:310 - Start minimization using.
—method: L-BFGS-B.
2023-08-01 22:27:09.212 | INFO | kliff.loss:_scipy_optimize:429 - Running in..

—multiprocessing mode with 2 processes.

RUNNING THE L-BFGS-B CODE

Machine precision = 2.220D-16

N: 3 M: 10

At X0 0 variables are exactly at the bounds

At iterate 0 f= 4.47164D+03 |[proj gl= 4.47898D+03
At iterate 1 f= 1.20212D+03 |[proj gl= 2.13266D+03
At iterate 1 f= 1.20212D+03 |proj gl= 2.13266D+03
At iterate 2 f= 2.16532D+02 |[proj gl= 1.90519D+02
At iterate 2 f= 2.16532D+02 |[proj gl= 1.90519D+02
At iterate 3 f= 2.07552D+02 |proj gl= 1.06071D+02
At iterate 3 f= 2.07552D+02 |proj gl= 1.06071D+02
At iterate 4 f= 1.70033D+02 |[proj gl= 3.48082D+02
At iterate 5 f= 1.64800D+02 |[proj gl= 3.74180D+02
At iterate 5 f= 1.64800D+02 |proj gl= 3.74180D+02
At iterate 6 f= 1.38087D+02 |[proj gl= 1.31340D+02
At iterate 6 f= 1.38087D+02 |[proj gl= 1.31340D+02
At iterate 7 f= 1.34855D+02 |proj gl= 1.45391D+01
At iterate 7 f= 1.34855D+02 |proj gl= 1.45391D+01
At iterate 8 f= 1.34599D+02 |[proj gl= 1.58968D+01
At iterate 9 f= 1.32261D+02 |[proj gl= 8.46707D+01

(continues on next page)

2.1. Train a Stillinger-Weber potential 9

KLIFF Documentation, Release 0.4.3

(continued from previous page)

At iterate 10 f= 1.26954D+02 Iproj gl= 2.36049D+02
At iterate 10 f= .26954D+02 |proj gl= .36049D+02
At iterate 11 f= .20788D+02 Iproj gl= .42511D+02
At iterate 11 f= 1.20788D+02 |proj gl= 2.42511D+02
At iterate 12 f= .84653D+01 |proj gl= .90333D+02
At iterate 12 f= .84653D+01 |proj gl= .90333D+02
At iterate 13 f= 7.92976D+01 |proj gl= 1.27395D+02
At iterate 13 f= .92970D+01 Iproj gl= 1.27395D+02
At iterate 14 f= .33426D+01 |proj gl= .12669D+02
At iterate 14 f= .33426D+01 |proj gl= .12669D+02
At iterate 15 f= 5.95658D+01 |proj gl= 2.50284D+02
At iterate 15 f= 5.95658D+01 Iproj gl= 2.50284D+02
At iterate 16 f= .19898D+01 |proj gl= .97639D+02
At iterate 16 f= 5.19898D+01 |proj gl= 2.97639D+02
At iterate 17 f= .31620D+01 Iproj gl= .39904D+02
At iterate 18 f= .00817D+01 |proj gl= .43105D+01
At iterate 19 f= .58825D+01 |proj gl= .94992D+02
At iterate 20 f= 1.00645D+01 Iproj gl= 3.25943D+02
At iterate 20 f= .00645D+01 |proj gl= .25943D+02
At iterate 21 f= 4.82724D+00 |proj gl= 2.33796D+01
At iterate 21 f= 4.82724D+00 |proj gl= 2.33796D+01
At iterate 22 f= .26863D+00 |proj gl= .48010D+01
At iterate 22 f= .26863D+00 Iproj gl= .48010D+01
At iterate 23 f= .81339D+00 Iproj gl= .37520D+01
At iterate 23 f= 2.81339D+00 |proj gl= 2.37520D+01
At iterate 24 f= .53369D+00 |proj gl= .24782D+01
At iterate 25 f= .31427D+00 Iproj gl= .19973D+01
At iterate 25 f= 2.31427D+00 Iproj gl= 4.19973D+01
At iterate 26 f= .82162D+00 |proj gl= .03854D+01
At iterate 26 f= .82162D+00 Iproj gl= .03854D+01
At iterate 27 f= .04312D+00 |proj gl= .46183D+01
At iterate 28 f= .95851D-01 |proj gl= .50873D+01
At iterate 28 f= .95851D-01 Iproj gl= .50873D+01
(continues on next page)
10 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

(continued from previous page)

At iterate 29 f= 7.40878D-01 |proj gl= 1.52873D+00
At iterate 29 f= 7.40878D-01 |[proj gl= 1.52873D+00
At iterate 30 f= 7.05900D-01 Iproj gl= 1.50051D+01
At iterate 30 f= 7.05900D-01 |proj gl= 1.50051D+01
At iterate 31 f= 6.95221D-01 |proj gl= 4.45629D+00
At iterate 31 f= 6.95221D-01 |proj gl= 4.45629D+00
At iterate 32 f= 6.94089D-01 |[proj gl= 1.64352D-01
At iterate 32 f= 6.94089D-01 |proj gl= 1.64352D-01
At iterate 33 f= 6.94079D-01 |proj gl= 2.10362D-02
At iterate 33 f= 6.94079D-01 |[proj gl= 2.10362D-02
At iterate 34 f= 6.94078D-01 |proj gl= 8.86005D-03
At iterate 35 f= 6.94078D-01 |proj gl= 8.83015D-03
At iterate 35 f= 6.94078D-01 |proj gl= 8.83015D-03
2023-08-01 22:27:43.444 | INFO | kliff.loss:minimize:312 - Finish minimization using..

—method: L-BFGS-B.

At iterate 36 f= 6.94078D-01 |proj gl= 5.10514D-04
Tit = total number of iterations
Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches
Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F = final function value
* ok %
N Tit Tnf Tnint Skip Nact Projg F
3 36 44 37 0 ® 5.105D-04 6.941D-01

F = 0.69407801330347585

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

fun: 0.6940780133034758
hess_inv: <3x3 LbfgsInvHessProduct with dtype=float64>
jac: array([2.62567724e-05, -5.10513851e-04, 1.01474385e-05])
message: 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'
nfev: 176
nit: 36
njev: 44
status: 0
(continues on next page)

2.1. Train a Stillinger-Weber potential 11

KLIFF Documentation, Release 0.4.3

(continued from previous page)
success: True
X: array([14.93863362, 0.58740265, 2.20146126])

The minimization stops after running for 27 steps. After the minimization, we’d better save the model, which can be
loaded later for the purpose to do a retraining or evaluations. If satisfied with the fitted model, you can also write it as
a KIM model that can be used with LAMMPS_, GULP_, ASE_, etc. via the kim-api_.

model . echo_opt_params()

model .save("kliff model.yaml")
model .write_kim_model ()

model.load("kliff_model.yaml")

2023-08-01 22:27:43.455 | INFO | kliff.models.kim:write_kim_model:692 - KLIFF_
—»trained model write to " /Users/mjwen.admin/Packages/kliff/docs/source/tutorials/SW_
—.StillingerWeber_1985_Si__MO_405512056662_006_kliff trained"

#
Model parameters that are optimized.
Note that the parameters are in the transformed space if
“params_transform’ is provided when instantiating the model.
#
Al
1.4938633615724747e+01 1.0000000000000000e+00 2.0000000000000000e+01
B1
5.8740264694219135e-01
sigma 1

2.0951000000000000e+00 fix

gamma 1
2.2014612645628717e+00

The first line of the above code generates the output. A comparison with the original parameters before carrying
out the minimization shows that we recover the original parameters quite reasonably. The second line saves the
fitted model to a file named kliff model.pkl on the disk, and the third line writes out a KIM potential named
SW_StillingerWeber_1985_Si__MO0_405512056662_006_kliff trained.

.. seealso:: For information about how to load a saved model, see doc.modules.

[%matplotlib inline

12 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

2.2 Train a neural network potential

In this tutorial, we train a neural network (NN) potential for silicon.

We are going to fit the NN potential to a training set of energies and forces from compressed and
stretched diamond silicon structures (the same training set used in tut_kim_sw). Download the train-
ing set :download:Si_training_set.tar.gz # <https://raw.githubusercontent.com/openkim/kliff/
master/examples/Si_training_set.tar.gz> (It will be automatically downloaded if it is not present.) The data
is stored in extended xyz format, and see doc.dataset for more information of this format.

Let’s first import the modules that will be used in this example.

from kliff import nn

from kliff.calculators import CalculatorTorch
from kliff.dataset import Dataset

from kliff.dataset.weight import Weight

from kliff.descriptors import SymmetryFunction
from kliff.loss import Loss

from kliff.models import NeuralNetwork

from kliff.utils import download_dataset

ModuleNotFoundError Traceback (most recent call last)
Cell In[2], line 1
----> 1 from kliff import nn

2 from kliff.calculators import CalculatorTorch

3 from kliff.dataset import Dataset

ModuleNotFoundError: No module named 'kliff'

2.2.1 Model

For a NN model, we need to specify the descriptor that transforms atomic environment information to the fingerprints,
which the NN model uses as the input. Here, we use the symmetry functions proposed by Behler and coworkers.

descriptor = SymmetryFunction(
cut_name="cos", cut_dists={"Si-Si": 5.0}, hyperparams="set51", normalize=True

)

The cut_name and cut_dists tell the descriptor what type of cutoff function to use and what the cutoff distances
are. hyperparams specifies the set of hyperparameters used in the symmetry function descriptor. If you prefer, you
can provide a dictionary of your own hyperparameters. And finally, normalize informs that the generated finger-
prints should be normalized by first subtracting the mean and then dividing the standard deviation. This normalization
typically makes it easier to optimize NN model.

We can then build the NN model on top of the descriptor.

N1 = 10
N2 = 10
model = NeuralNetwork(descriptor)
model .add_layers(
first hidden layer
nn.Linear(descriptor.get_size(), N1),
(continues on next page)

2.2. Train a neural network potential 13

KLIFF Documentation, Release 0.4.3

(continued from previous page)
nn.Tanh(),
second hidden layer
nn.Linear(N1, N2),
nn.Tanh(Q),
output layer
nn.Linear (N2, 1),
)

model .set_save_metadata(prefix="./kliff saved_model", start=5, frequency=2)

In the above code, we build a NN model with an input layer, two hidden layer, and an output layer. The descriptor
carries the information of the input layer, so it is not needed to be specified explicitly. For each hidden layer, we first do a
linear transformation using nn.Linear(size_in, size_out) (essentially carrying out $y = xW+b$, where W is
the weight matrix of size size_in by size_out, and b is a vector of size size_out. Then we apply the hyperbolic
tangent activation function nn.Tanh() to the output of the Linear layer (i.e. y) so as to add the nonlinearity. We
use a Linear layer for the output layer as well, but unlike the hidden layer, no activation function is applied here. The
input size size_in of the first hidden layer must be the size of the descriptor, which is obtained using descriptor.
get_size(). For all other layers (hidden or output), the input size must be equal to the output size of the previous
layer. The out_size of the output layer must be 1 such that the output of the NN model gives the energy of the atom.

The set_save_metadata function call informs where to save intermediate models during the optimization (discussed
below), and what the starting epoch and how often to save the model.

2.2.2 Training set and calculator

The training set and the calculator are the same as explained in tut_kim_sw. The only difference is that we need to
use the :mod:~kliff.calculators.CalculatorTorch(), which is targeted for the NN model. Also, its create()
method takes an argument reuse to inform whether to reuse the fingerprints generated from the descriptor if it is
present. To train on gpu, set gpu=True in Calculator.

training set

dataset_path = download_dataset(dataset_name="Si_training_set")
dataset_path = dataset_path.joinpath("varying_alat")

weight = Weight(forces_weight=0.3)

tset = Dataset(dataset_path, weight)

configs = tset.get_configs()

calculator
calc = CalculatorTorch(model, gpu=False)
_ = calc.create(configs, reuse=False)

2.2.3 Loss function

KLIFF uses a loss function to quantify the difference between the training data and potential predictions and uses
minimization algorithms to reduce the loss as much as possible. In the following code snippet, we create a loss function
that uses the Adam optimizer to minimize it. The Adam optimizer supports minimization using mini-batches of data,
and here we use 100 configurations in each minimization step (the training set has a total of 400 configurations as can
be seen above), and run through the training set for 10 epochs. The learning rate 1r used here is 0.001, and typically,
one may need to play with this to find an acceptable one that drives the loss down in a reasonable time.

loss = Loss(calc)
result = loss.minimize(method="Adam", num_epochs=10, batch_size=100, 1r=0.001)

14 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

We can save the trained model to disk, and later can load it back if we want. We can also write the trained model to a
KIM model such that it can be used in other simulation codes such as LAMMPS via the KIM API.

model .save("final_model.pkl")
loss.save_optimizer_state("optimizer_stat.pkl")

model .write_kim_model ()

[%matplotlib inline

2.3 Train a neural network potential for SiC

In this tutorial, we train a neural network (NN) potential for a system containing two species: Si and C. This is very
similar to the training for systems containing a single specie (take a look at tut_nn for Si if you haven’t yet).

from kliff import nn

from kliff.calculators.calculator_torch import CalculatorTorchSeparateSpecies
from kliff.dataset import Dataset

from kliff.dataset.weight import Weight

from kliff.descriptors import SymmetryFunction

from kliff.loss import Loss

from kliff.models import NeuralNetwork

from kliff.utils import download_dataset

descriptor = SymmetryFunction(
cut_name="cos",
cut_dists={"Si-Si": 5.0, "C-C": 5.0, "Si-C": 5.0},
hyperparams="set51",
normalize=True,

ModuleNotFoundError Traceback (most recent call last)

Cell In[2], line 1

----> 1 from kliff import nn
2 from kliff.calculators.calculator_torch import CalculatorTorchSeparateSpecies
3 from kliff.dataset import Dataset

ModuleNotFoundError: No module named 'kliff'

We will create two models, one for Si and the other for C. The purpose is to have a separate set of parameters for Si
and C so that they can be differentiated.

N1 = 10
N2 = 10
model_si = NeuralNetwork(descriptor)
model_si.add_layers(
first hidden layer
nn.Linear(descriptor.get_size(), N1),
nn.Tanh(),
second hidden layer

(continues on next page)

2.3. Train a neural network potential for SiC 15

KLIFF Documentation, Release 0.4.3

(continued from previous page)

nn.Linear(N1, N2),
nn.Tanh(Q),

output layer
nn.Linear(N2, 1),

)

model_si.set_save_metadata(prefix="./kliff saved_model_si", start=5, frequency=2)

N1 = 10
N2 = 10
model_c = NeuralNetwork(descriptor)
model_c.add_layers(
first hidden layer
nn.Linear(descriptor.get_size(), N1),
nn.Tanh(),
second hidden layer
nn.Linear(N1, N2),
nn.Tanh(Q),
output layer
nn.Linear(N2, 1),
)

model_c.set_save_metadata(prefix="./kliff saved_model_c", start=5, frequency=2)

training set

dataset_path = download_dataset(dataset_name="SiC_training_set")
weight = Weight(forces_weight=0.3)

tset = Dataset(dataset_path, weight)

configs = tset.get_configs()

calculator
calc = CalculatorTorchSeparateSpecies({"Si": model_si, "C": model_c}, gpu=False)
_ = calc.create(configs, reuse=False)

loss
loss = Loss(calc)
result = loss.minimize(method="Adam", num_epochs=10, batch_size=4, 1lr=0.001)

We can save the trained model to disk, and later can load it back if we want.

model_si.save("final_model_si.pkl")
model_c.save("final_model_c.pkl")
loss.save_optimizer_state("optimizer_stat.pkl")

[%matplotlib inline

16 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

2.4 Parameter transformation for the Stillinger-Weber potential

Parameters in the empirical interatomic potential are often restricted by some physical constraints. As an example, in
the Stillinger-Weber (SW) potential, the energy scaling parameters (e.g., A and B) and the length scaling parameters
(e.g., sigma and gamma) are constrained to be positive.

Due to these constraints, we might want to work with the log of the parameters, i.e., Log(A), log(B), log(sigma),
and log(gamma) when doing the optimization. After the optimization, we can transform them back to the original
parameter space using an exponential function, which will guarantee the positiveness of the parameters.

In this tutorial, we show how to apply parameter transformation to the SW potential for silicon that is archived on
OpenKIM_. Compare this with tut_kim_sw.

To start, let’s first install the SW model::
$ kim-api-collections-management install user SW_StillingerWeber_1985_Si_ MO_405512056662_006

.. seealso:: This installs the model and its driver into the User Collection. See install_model for more informa-
tion about installing KIM models.

This is

import numpy as np

from kliff.calculators import Calculator

from kliff.dataset import Dataset

from kliff.dataset.weight import Weight

from kliff.loss import Loss

from kliff.models import KIMModel

from kliff.models.parameter_transform import LogParameterTransform
from kliff.utils import download_dataset

ModuleNotFoundError Traceback (most recent call last)
Cell In[2], line 3

1 import numpy as np
----> 3 from kliff.calculators import Calculator

4 from kliff.dataset import Dataset

5 from kliff.dataset.weight import Weight

ModuleNotFoundError: No module named 'kliff'

Before creating a KIM model for the SW potential, we first instantiate the parameter transformation class that we want
to use. kliff has a built-in log-transformation; however, extending it to other parameter transformation can be done
by creating a subclass of :class:~kliff.models.parameter_transform.ParameterTransform.

To make a direct comparison to tut_kim_sw, in this tutorial we will apply log-transformation to parameters A, B,
sigma, and gamma, which correspond to energy and length scales.

transform = LogParameterTransform(param_names=["A", "B", "sigma", "gamma"])

model = KIMModel(
model_name="SW_StillingerWeber_1985_Si__MO0_405512056662_006",
params_transform=transform,

)

model . echo_model_params (params_space="original")

2.4. Parameter transformation for the Stillinger-Weber potential 17

KLIFF Documentation, Release 0.4.3

model.echo_model_params(params_space="original") above will print out parameter values in the orig-
inal, untransformed space, i.e., the original parameterization of the model. If we supply the argument
params_space="transformed", then the printed parameter values are given in the transformed space, e.g., log space
(below). The values of the other parameters are not changed.

[model .echo_model_params(params_space="original") J

Compare the output of params_space="transformed" and params_space="original", you can see that the val-
ues of A, B, sigma, and gamma are in the log space after the transformation.

Next, we will set up the initial guess of the parameters to optimize. A value of "default" means the initial guess will
be directly taken from the value already in the model.

model . set_opt_params(
A=[[np.log(5.0), np.log(l.0), np.log(20)]1],
B=[["default"]],
sigma=[[np.log(2.0951), "fix"]],
gamma=[[np.log(1.5)1],

)

model . echo_opt_params()

We can show the parameters we’ve just set by model.echo_opt_params().

Once we set the model and the parameter transformation scheme, then further calculations, e.g., training the model,
will be performed using the transformed space and can be done in the same way as in tut_kim_sw.

Training set

dataset_path = download_dataset(dataset_name="Si_training_set")
weight = Weight(energy_weight=1.0, forces_weight=0.1)

tset = Dataset(dataset_path, weight)

configs = tset.get_configs()

Calculator
calc = Calculator(model)
_ = calc.create(configs)

Loss function and model training

steps = 100

loss = Loss(calc, nprocs=2)

loss.minimize (method="L-BFGS-B", options={"disp": True, "maxiter": steps})

model . echo_model_params(params_space="original")

The optimized parameter values from this model training are very close, if not the same, as in tut_kim_sw. This is
expected for the simple tutorial example considered. But for more complex models, training in a transformed space
can make it much easier for the optimizer to navigate the parameter space.

[%matplotlib inline J

18 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

2.5 MCMC sampling

In this example, we demonstrate how to perform uncertainty quantification (UQ) using parallel tempered MCMC
(PTMCMC). We use a Stillinger-Weber (SW) potential for silicon that is archived in OpenKIM_.

For simplicity, we only set the energy-scaling parameters, i.e., A and 1ambda as the tunable parameters. Furthermore,
these parameters are physically constrained to be positive, thus we will work in log parameterization, i.e. 1log(A) and
log(lambda). These parameters will be calibrated to energies and forces of a small dataset, consisting of 4 compressed
and stretched configurations of diamond silicon structure.

To start, let’s first install the SW model::
$ kim-api-collections-management install user SW_StillingerWeber_1985_Si__MO_405512056662_006

.. seealso:: This installs the model and its driver into the User Collection. See install_model for more informa-
tion about installing KIM models.

from multiprocessing import Pool

import numpy as np
from corner import corner

from kliff.calculators import Calculator

from kliff.dataset import Dataset

from kliff.dataset.weight import MagnitudeInverseWeight

from kliff.loss import Loss

from kliff.models import KIMModel

from kliff.models.parameter_transform import LogParameterTransform
from kliff.uq import MCMC, autocorr, mser, rhat

from kliff.utils import download_dataset

ModuleNotFoundError Traceback (most recent call last)
Cell In[2], line 4

1 from multiprocessing import Pool

3 import numpy as np
----> 4 from corner import corner

6 from kliff.calculators import Calculator

7 from kliff.dataset import Dataset

ModuleNotFoundError: No module named 'corner'

Before running MCMC, we need to define a loss function and train the model. More detail information about this step
can be found in tut_kim_sw and tut_params_transform.

Instantiate a transformation class to do the log parameter transform
param_names = ["A", "lambda"]
params_transform = LogParameterTransform(param_names)

Create the model

model = KIMModel(
model_name="SW_StillingerWeber_1985_Si__MO0_405512056662_006",
params_transform=params_transform,

(continues on next page)

2.5. MCMC sampling 19

KLIFF Documentation, Release 0.4.3

(continued from previous page)

Set the tunable parameters and the initial guess
opt_params = {

"A": [["default", -8.0, 8.0]],

"lambda": [["default", -8.0, 8.0]],

model . set_opt_params(**opt_params)
model . echo_opt_params()

Get the dataset and set the weights
dataset_path = download_dataset(dataset_name="Si_training set_4_configs")
Instantiate the weight class
weight = MagnitudeInverseWeight (
weight_params={
"energy_weight_params": [0.0, 0.1],
"forces_weight_params": [0.0, 0.1],

)
Read the dataset and compute the weight

tset = Dataset(dataset_path, weight=weight)
configs = tset.get_configs()

Create calculator
calc = Calculator(model)
ca = calc.create(configs)

Instantiate the loss function
residual_data = {"normalize_by_natoms": False}
loss = Loss(calc, residual_data=residual_data)

Train the model
loss.minimize (method="L-BFGS-B", options={"disp": True})
model . echo_opt_params()

To perform MCMC simulation, we use :class:~k1iff.uq.MCMC.This class interfaces with ptemcee_ Python package
to run PTMCMC, which utilizes the affine invariance property of MCMC sampling. We simulate MCMC sampling at
several different temperatures to explore the effect of the scale of bias and overall error bars.

Define some variables that correspond to the dimensionality of the problem
ntemps = 4 # Number of temperatures to simulate

ndim = calc.get_num_opt_params() # Number of parameters

nwalkers = 2 * ndim # Number of parallel walkers to simulate

We start by instantiating :class:~k1iff.uq.MCMC. This requires :class:~k1iff.loss.Loss instance to construct the
likelihood function. Additionally, we can specify the prior (or log-prior to be more precise) via the logprior_fn
argument, with the default option be a uniform prior that is bounded over a finite range that we specify via the
logprior_args argument.

To specify the sampling temperatures to use, we can use the arguments ntemps and Tmax_ratio to set how many
temperatures to simulate and the ratio of the highest temperature to the natural temperature T_0, respectively. The
default values of ntemps and Tmax_ratio are 10 and 1.0, respectively. Then, an internal function will create a list of
logarithmically spaced points from $T = 1.0$ to $T = T_{\text{max_ratio}} \times T_0$. Alternatively, we can also
give a list of the temperatures via Tladder argument, which will overwrites ntemps and Tmax_ratio.

20 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

The sampling processes can be parallelized by specifying the pool. Note that the pool needs to be declared after
instantiating :class:~k1iff.uq.MCMC, since the posterior function is defined during this process.

Set the boundaries of the uniform prior
bounds = np.tile([-8.0, 8.0], (ndim, 1))

It is a good practice to specify the random seed to use in the calculation to generate
a reproducible simulation.

seed = 1717

np.random.seed(seed)

Create a sampler
sampler = MCMC(

loss,

ntemps=ntemps,

logprior_args=(bounds,),

random=np .random.RandomState(seed),
)
Declare a pool to use parallelization
sampler.pool = Pool(nwalkers)

To run the MCMC sampling, we use :meth:~k1iff.uq.MCMC.run_mcmc. This function requires us to provide initial
states p_0 for each temperature and walker. We also need to specify the number of steps or iterations to take.

Initial starting point. This should be provided by the user.
p® = np.empty((ntemps, nwalkers, ndim))
for ii, bound in enumerate(bounds) :

pO[:, :, ii] = np.random.uniform(*bound, (4, 4))

Run MCMC
sampler.run_mcmc (p®, 5000)
sampler.pool.close()

Retrieve the chain
chain = sampler.chain

The resulting chains still need to be processed. First, we need to discard the first few iterations in the beginning of each
chain as a burn-in time. This is similar to the equilibration time in a molecular dynamic simulation before we can start
the measurement. KLIFF provides a function to estimate the burn-in time, based on the Marginal Standard Error Rule
(MSER). This can be accessed via :func:~kliff.ug.mcmc_utils.mser.

Estimate equilibration time using MSER for each temperature, walker, and dimension.
mser_array = np.empty((ntemps, nwalkers, ndim))
for tidx in range(ntemps):
for widx in range(nwalkers):
for pidx in range(ndim):
mser_array[tidx, widx, pidx] = mser(
chain[tidx, widx, :, pidx], dmin=0, dstep=10, dmax=-1
)

burnin = int(np.max(mser_array))
print (f"Estimated burn-in time: {burnin}")

After discarding the first few iterations as the burn-in time, we only want to keep every τ-th iteration from the
remaining chain, where τ is the autocorrelation length, to ensure uncorrelated samples. This calculation can be

2.5. MCMC sampling 21

KLIFF Documentation, Release 0.4.3

done using :func:~kliff.uq.mcmc_utils.autocorr.

Estimate the autocorrelation length for each temperature
chain_no_burnin = chain[:, :, burnin:]

acorr_array = np.empty((ntemps, nwalkers, ndim))
for tidx in range(ntemps):
acorr_array[tidx] = autocorr(chain_no_burnin[tidx], c=1, quiet=True)

thin = int(np.ceil(np.max(acorr_array)))
print (f"Estimated autocorrelation length: {thin}")

Finally, after obtaining the independent samples, we need to assess whether the resulting samples have converged to a
stationary distribution, and thus a good representation of the actual posterior. This is done by computing the potential
scale reduction factor (PSRF), denoted by $\hat{R}*p$. The value of $\hat{R} p$ declines to 1 as the number of
iterations goes to infinity. A common threshold is about 1.1, but higher threshold has also been used.

Assess the convergence for each temperature
samples = chain_no_burnin[:, :, ::thin]

threshold = 1.1 # Threshold for rhat

rhat_array = np.empty(ntemps)

for tidx in range(ntemps):
rhat_array[tidx] = rhat(samples[tidx])

print (£"$\hat{{r}}*p$ values: {rhat_array}")

Notice that in this case, $\hat{R}*p < 1.1$ for all temperatures. When this criteria is not satisfied, then the sampling
process should be continued. Note that some sampling temperatures might converge at slower rates compared to the
others.

After obtaining the independent samples from the MCMC sampling, the uncertainty of the parameters can be obtained
by observing the distribution of the samples. As an example, we will use corner_ Python package to present the MCMC
result at sampling temperature 1.0 as a corner plot.

Plot samples at T=1.0
corner (samples[0].reshape((-1, ndim)), labels=[r"$\1log(A)$", r"$\log(\lambda)$"])

2.6 Train a Lennard-Jones potential

In this tutorial, we train a Lennard-Jones potential that is build in KLIFF (i.e. not models archived on OpenKIM_).
From a user’s perspective, a KLIFF built-in model is not different from a KIM model.

Compare this with tut_kim_sw.

from kliff.calculators import Calculator
from kliff.dataset import Dataset

from kliff.loss import Loss

from kliff.models import LennardJ]ones
from kliff.utils import download_dataset

training set
dataset_path = download_dataset(dataset_name="Si_training set_4_configs")
(continues on next page)

22 Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

(continued from previous page)

tset = Dataset(dataset_path)
configs = tset.get_configs()

calculator
model = LennardJones()
model . echo_model_params()

fitting parameters
model . set_opt_params(sigma=[["default"]], epsilon=[["default"]])
model . echo_opt_params()

calc = Calculator(model)
calc.create(configs)

loss
loss = Loss(calc, nprocs=1)
result = loss.minimize(method="L-BFGS-B", options={"disp": True, "maxiter": 10})

print optimized parameters
model . echo_opt_params ()
model .save("kliff model.yaml")

2023-08-01 21:59:15.496 | INFO | kliff.dataset.dataset:_read:398 - 4 configurations..
—read from /Users/mjwen.admin/Packages/kliff/docs/source/tutorials/Si_training_set_4_
—configs

2023-08-01 21:59:15.499 | INFO | kliff.calculators.calculator:create:107 - Create.
—~calculator for 4 configurations.

2023-08-01 21:59:15.499 | INFO | kliff.loss:minimize:310 - Start minimization using..
—method: L-BFGS-B.

2023-08-01 21:59:15.500 | INFO | kliff.loss:_scipy_optimize:427 - Running in serial.,
—.mode.

This problem is unconstrained.

#
Available parameters to optimize.
Parameters in “original’ space.

Model: LJ6-12

s
*

name: epsilon
value: [1.]
size: 1

name: sigma
value: [2.]
size: 1

name: cutoff
value: [5.]
size: 1

(continues on next page)

2.6. Train a Lennard-Jones potential 23

KLIFF Documentation, Release 0.4.3

i

(continued from previous page)

L

Model parameters that are optimized.
Note that the parameters are in the transformed s

pace if

“params_transform’ is provided when instantiating the model.

#

sigma 1
2.0000000000000000e+00

epsilon 1

1.0000000000000000e+00

RUNNING THE L-BFGS-B CODE

Machine precision = 2.220D-16

N = 2 M= 10

At X0 0 variables are exactly at the bounds

At iterate 0 f= 6.40974D+00 Iproj gl= 2.92791D+01
At iterate 1 f= 2.98676D+00 |proj gl= 3.18782D+01
At iterate 2 f= 1.56102D+00 Iproj gl= 1.02614D+01
At iterate 3 f= 9.61567D-01 |proj gl= 8.00167D+00
At iterate 4 f= 3.20489D-02 |proj gl= 7.63379D-01
At iterate 5 f= 2.42400D-02 |proj gl= 5.96998D-01
At iterate 6 f= 1.49914D-02 |proj gl= 6.87782D-01
At iterate 7 f= 9.48615D-03 |proj gl= 1.59376D-01
At iterate 8 f= 6.69609D-03 |[proj gl= 1.14378D-01
2023-08-01 21:59:16.968 | INFO | kliff.loss:minimize:312 - Finish minimization using..
—method: L-BFGS-B.

At iterate 9 f= 4.11024D-03 |proj gl= 3.20712D-01
At iterate 10 f= 2.97209D-03 |proj gl= 7.03411D-02

(continues on next page)

24

Chapter 2. Tutorials

KLIFF Documentation, Release 0.4.3

(continued from previous page)
Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F = final function value
N Tit Tnf Tnint Skip Nact Projg F
10 13 1 0 ® 7.034D-02 2.972D-03
F = 2.9720927488600178E-003

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT
#
Model parameters that are optimized.

Note that the parameters are in the transformed space if

“params_transform’ is provided when instantiating the model.

s
*

sigma 1
2.0629054951532582e+00

epsilon 1
1.5614850326987884e+00

2.7 Train a linear regression potential

In this tutorial, we train a linear regression model on the descriptors obtained using the symmetry functions.

from kliff.calculators import CalculatorTorch
from kliff.dataset import Dataset

from kliff.descriptors import SymmetryFunction
from kliff.models import LinearRegression

from kliff.utils import download_dataset

descriptor = SymmetryFunction(
cut_name="cos", cut_dists={"Si-Si": 5.0}, hyperparams="set30", normalize=True

)

model = LinearRegression(descriptor)

training set

dataset_path = download_dataset(dataset_name="Si_training_set")
dataset_path = dataset_path.joinpath("varying_alat")

tset = Dataset(dataset_path)

configs = tset.get_configs()

(continues on next page)

2.7. Train a linear regression potential 25

KLIFF Documentation, Release 0.4.3

(continued from previous page)

calculator

calc = CalculatorTorch(model)

calc.create(configs, reuse=False)

2023-08-01 21:59:01.754 | INFO | kliff.dataset.dataset:_read:398 - 400.
—.configurations read from /Users/mjwen.admin/Packages/kliff/docs/source/tutorials/Si_
—training_set/varying_a